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ABSTRACT 

Over the last two decades, dual-polarimetric weather radar has proven to be a 

valuable instrument providing critical precipitation information through remote sensing 

of the atmosphere. Modern weather radar systems operate with high sampling rates and 

long dwell times on targets. Often only limited target information is desired, leading to a 

pertinent question: could lesser samples have been acquired in the first place? Recently, a 

revolutionary sampling paradigm – compressed sensing (CS) – has emerged, which 

asserts that it is possible to recover signals from fewer samples or measurements than 

traditional methods require without degrading the accuracy of target information. CS 

methods have recently been applied to point target radars and imaging radars, resulting in 

hardware simplification advantages, enhanced resolution, and reduction in data 

processing overheads. But CS applications for volumetric radar targets such as 

precipitation remain relatively unexamined. This research investigates the potential 

applications of CS to radar remote sensing of precipitation. In general, weather echoes 

may not be sparse in space-time or frequency domain. Therefore, CS techniques 

developed for point targets, such as in aircraft surveillance radar, are not directly 

applicable to weather radars. However, precipitation samples are highly correlated both 

spatially and temporally. We, therefore, adopt latest advances in matrix completion 

algorithms to demonstrate the sparse sensing of weather echoes. Several extensions of 

this approach are then considered to develop a more general CS-based weather radar 

processing algorithms in presence of noise, ground clutter and dual-polarimetric data. 

Finally, a super-resolution approach is presented for the spectral recovery of an 

undersampled signal when certain frequency information is known.  
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PUBLIC ABSTRACT 

A scanning radar beams a signal in multiple directions, and extracts the 

information about the targets from the signal that comes back after interaction with a 

target. A fast scanning radar would be able to update the changing target scenario quickly 

but, at the same time, it would also hit a target less frequently leading to inaccurate 

interpretation of target information. Recent research on the application of a novel 

technique called compressed sensing (CS) to synthetic aperture radars and point target 

radars suggests that the radar scan rate can be increased without compromising the 

information accuracy. However, these research efforts have not investigated application 

of CS to weather radars.  In this research, we propose a CS framework for weather radars 

where the target-of-interest is volumetric. Our approach is based on the recent advances 

in low-rank matrix completion. We use Iowa X-band Polarimetric (XPOL) radar data to 

test our algorithms. 
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CHAPTER 1 

INTRODUCTION 

The electromagnetic wave is characterized by its amplitude, frequency and 

polarization state. The interaction of the radiated wave from the radar with the moving 

particles in the atmosphere brings a change in all three characteristics of the scattered 

wave. By analyzing this change it is possible to infer the particles’ size, radial velocity, 

shape and orientation. The earliest weather radars in the era of the 1950s were mainly 

used to measure the back scatter power at a single polarization state. During the 1960-

70s, the Doppler shift principle was used to measure the radial velocity of hydrometeors 

in addition to the back scattered power although still using a single polarization state. By 

the mid-1970s, the Doppler radar’s importance for operational applications was widely 

recognized. In the late 1980s, the deployment of Doppler radars for operational weather 

forecasting by National Weather Service (NWS) accelerated, and has continued to the 

present time (Bringi et al. 2007). 

Before early 1970s there was limited research in dual-polarized radars for weather 

applications. The measurements were limited by the poor cross polar performance of the 

radar hardware, particularly the antenna and its feed. The modern era of polarimetric 

radar using precision microwave hardware began with the Canadian radars (McCormick 

and Hendry 1979) starting in the late 60s-early 70s using dual-circular polarization 

techniques for propagation research (Ka and X-bands) and hail detection (at S-band). 

This research clearly showed that oblate rain drops formed a highly oriented medium and 

that the differential propagation phase and differential attenuation between the horizontal 

and vertical polarizations through such a highly-oriented medium could be measured at 

Ka and S-bands using circular polarization techniques without requiring any Doppler 

processing (Hendry et al. 1976). The use of widely used dual-linear polarizations 

(horizontal and vertical) was proposed in the late 70s primarily because at low elevation 
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angles these states are aligned along the principal axes of the highly oriented oblate rain 

medium (Seliga and Bringi 1976; Seliga and Bringi 1978). 

Motivations 

With the advances in hardware for the dual-polarized transmission, the signal 

processing of weather radar signals has also improved (Keeler and Passarelli 1990). The 

primary function of radar signal processing is the accurate, efficient extraction of 

information from radar echoes. A typical pulsed Doppler radar system samples data at 

1000 range bins at 1 kilohertz pulse repetition frequency (PRF), generating 

approximately 3 million samples per second (typically in-phase (I) and quadrature phase 

(Q) components from a linear channel receiver). These "time series", in their raw form, 

convey little information that is of direct use in determining the state of the atmosphere. 

The volume of time series data is sufficiently large that storage for later analysis is 

impractical except for limited regions of time and space. The data must be processed in 

real time to reduce its volume and to convert it to more useful form. 

 

Figure 1. Observed reflectivity for a rain event by XPOL-2 radar on 12 June 2013 at the 
scan rate of (a) 8 °s

-1
 and (b) 5 °s

-1
. 
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The radar signal acquisition is greatly affected by the dwell time, i.e., the time 

duration a radar beam spends hitting a particular target (Skolnik 2008b). Surveillance 

radars constantly scan the target scene in order to provide quick updates on the movement 

of targets-of-interest. The scan rate of the radar is often limited by the dwell time, which, 

in turn, is determined by the precision necessary to ascertain information about the target. 

A longer dwell time would lead to more accurate target information, but, simultaneously, 

it would decrease the update rate of the target scene (Figure 1). Using conventional radar 

hardware and signal processing techniques, it is difficult to maintain the data quality with 

faster scan rates.  

Further, the massive data acquisition of weather radar is accentuated if the radar is 

deployed onboard satellites such as the Primary Radar (PR) on Tropical Rainfall 

Measuring Mission (TRMM) (Kummerow et al. 2000) and Dual Precipitation Radar 

(DPR) onboard recently launched Global Precipitation Measurement (GPM) satellites 

(Iguchi et al. 2003). In general, remote sensing by satellites is characterized by massive 

data acquisitions of global-scale information (Ma and Le Dimet 2009). In the case of 

higher-resolution satellite-based imaging, the data acquisition is often followed by data 

compression to store and transmit data in order to make economical use of satellite 

hardware and power. The transmission of compressed data back to Earth introduces 

distortions and mosaic artifacts (Ma 2009). As the use of spaceborne weather radars that 

sample data more frequently becomes commonplace, these satellites will soon be 

confronted with the problems of storage, transmission, and power, while also trying to 

preserve spatial resolutions and quality. It might be more efficient to eliminate the data 

compression step in satellite-based remote sensing and, instead, make limited 

measurements. 
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Compressed Sensing 

Formally proposed in 2006 in two seminal research papers (Donoho 2006a; 

Candès et al. 2006), CS is a novel signal processing technique that unites digital sampling 

and digital data compression in a single step. While conventional signal processing 

methods sample at Nyquist-Shannon rate and then compress the data for minimal storage, 

CS allows sampling of only useful information at lower sampling rates. This feature is 

particularly attractive for many radar and remote sensing applications which require 

efficient and rapid data acquisition.  

At the heart of CS lies the following problem (Figure 1): a discrete signal 𝒙 of 

length 𝑁, is 𝐾-sparse if at most 𝐾 ≪ 𝑁 of its coefficients are nonzero (perhaps under 

some appropriate dictionary, such as Fourier, wavelet, etc.). Then the true information 

content of 𝒙  lives in at most 𝐾  dimensions rather than 𝑁 . Therefore, for signal 

acquisition, one has only to measure a signal 𝑀 ~ 𝐾 times instead of 𝑁. This is done by 

making 𝑀 non-adaptive, random, linear observations in the form of 𝒚 =  𝑨𝒙 where 𝑨 is 

an 𝑀 × 𝑁 measurement matrix. If 𝑨 is sufficiently “incoherent,” then the information of 

𝒙  will be embedded in 𝒚  such that it can be perfectly recovered with a very high 

probability. For practical applications, the condition of sparsity is relaxed to 

compressibility or approximate sparsity. Here, most of the coefficients are assumed to  
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Figure 2. Illustration of compressed sensing problem. The measurement matrix is a 
randomly generated Gaussian matrix (Baraniuk 2007). 

be very small or insignificant but not exactly zero, thereby making it possible to apply CS 

on sparse signals  in noise. 

The compressed sensing approach recovers the sparse signal x from the 

knowledge of y by finding the solution to the following problem (Baraniuk 2007): 

(𝑃0) 
minimize ‖𝑥‖0 

subject to 𝑦 = 𝐴𝑥 
(1) 

where ‖∙‖0 denotes the l0 norm, i.e., the number of non-zero elements in a vector. It is 

obvious that minimizing the l0 norm would yield the sparsest solution to problem (𝑃0). 

However, solving (𝑃0)would require a combinatorial search and computational resources 

beyond the current technological reach. The key result from the theory of compressed 

sensing states that, under certain “incoherency” conditions on matrix 𝐴 , (𝑃0)  can be 

solved by replacing l0 by its closest convex approximation – the l1 norm – as follows: 
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(𝑃1) 
minimize ‖𝑥‖1  

subject to 𝑦 = 𝐴𝑥 
(2) 

In summary, for CS techniques to succeed, (a) x must be sparse and (b) A must be 

incoherent, i.e., the measurements should be randomly mixed. Stating these requirements 

for a radar problem, the radar echoes must be sparse and the antenna must sample the 

radar coverage domain randomly. 

Prior Art And Inspirations 

Because radar signals are quite recognizably sparse in range and frequency, with 

typically few targets of interest within range, radar is a natural fit for compressed sensing. 

There are two different tasks of radar: the first is to detect and localized distinct targets. 

Here, the resolution cells in range, Doppler, and angle are designed coarse enough to 

assume that the target is contained in a single cell. The second radar operation is imaging; 

here the aim is to have many fine resolution cells covering the target (inverse synthetic 

aperture radar (ISAR), range-profiling) or the scene (synthetic aperture radar (SAR)) to 

get image-like information. In both situations, CS can be applied in principle. For 

imaging, the sparsity property can be justified if there are only a few dominant point-like 

scattering centers in the scene, which is often true especially for targets like vehicles, 

airplanes and soon. A spiky reconstruction of the reflectivity - as CS offers—has the 

potential to be of high value for automatic target recognition.  

The role of sparsity in radar signal processing and how compressed sensing 

techniques relate to established processing methods is discussed by (Potter et al. 2010) 

with compressed sensing to reduce radar hardware complexity and cost is noted by 

(Baraniuk and Steeghs 2007), and (Ender 2010), while (Herman and Strohmer 2009) 

explores the use of compressed sensing for increased target detection resolution.  

 There are many papers about application of CS to various radar tasks. The most 

elementary task is pulse compression, treated in a large number of papers, where sparse 
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sampling can be applied in the fast time domain as well as in the frequency domain. An 

efficient method is to transmit a set of frequencies instantaneously (Ender 2010; Yanan et 

al. 2011). The optimization of the waveforms for CS is regarded e.g. in (He et al. 2011), 

orthogonal frequency division multiplexing (OFDM) waveforms in (Lellouch et al. 

2009). Aerospace multi-channel MTI is an interesting situation where the space of scene 

points is extended by the dimension ’radial velocity’. The clutter returns gather at the 

subspace in which Doppler is zero while moving targets are represented by sparse points 

in the volume (Pruente 2010).  

A great attention has been directed to multiple-input/multiple-output (MIMO) 

radar systems [11, 12] (Kalogerias et al. 2013; Yu et al. 2012b). This situation well fitted 

to CS reconstruction, since the signals are related to all Tx/Rx pairs which in general lead 

to a non-uniform thinned sampling in range and angles. Passive coherent location (PCL) 

is a special case of a MIMO radar where the waveforms and the positions of the 

transmitters cannot be influenced by the user. 

The application of CS to Synthetic Aperture Radar (SAR) may be problematic, 

first because of the possibly not given sparsity of the reflectivity, and secondly because of 

the tremendous numerical effort needed if larger images shall be processed. On the other 

hand, CS applied to SAR tomography is really a great example for a reasonable CS use  

(Zhu and Bamler 2012). While the SAR images for different paths of an earth 

observation satellite are conventionally generated in range and azimuth, the reflectivity in 

the third dimension - here: the elevation angle – is reconstructed via CS. Since normally 

in one range-azimuth pixel only one elevation angle is occupied by scatterers, in the case 

of layover also reflections from two or more elevation angles can be present. The scene is 

naturally sparse in the third dimension. The application of CS to ISAR imaging (Li et al. 

2012) is promising, especially since the number of pixels can be limited and the objects 

often show sparse reflections. 
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Many attempts have also been undertaken to process ultra-wide-band (UWB) 

radar data by CS algorithms, often in the application to through-the-wall radar and 

ground penetrating radar (Ender 2010). The latter is particularly interesting because of 

the unknown permittivity of the ground. 

As outlined above, most of the research efforts on application of CS to radar 

remote sensing are confined to point target radars or imaging radars such as SAR. The 

potential of CS to weather radars which sense volumetric targets is relatively unexamined 

so far. 

Structure Of The Thesis 

This research has observational, numerical and theoretical components. In this 

chapter, we introduced the research problem and motivations of using CS to address the 

faster scans of weather radars. We discussed existing application of compressed sensing 

for radar and remote sensing problems, in particular, for point-target radars. 

Chapter 2 provides a brief overview of the signal theory of weather radars and the 

Polarimetric observables. For past few years, there has been enormous interest in short-

wavelength weather radars. We explain this thrust in the context of Iowa X-band 

POLarimetric (XPOL) radars that we use for data collection for this research.  

In Chapter 3, we discuss the existing formulations of compressed sensing to 

point-target radars, and their inapplicability to weather which is a volumetric target. The 

weather echo is nor parsimonious in conventional dictionaries of range-time and Doppler. 

We explain these aspects in detail in this chapter. 

Chapter 4 presents our approach where we formulate the CS-based weather radar 

as a matrix completion problem. We also discuss the differences our problem has with 

other related research areas. Chapter 4 includes some preliminary results that we extend 

to more practical scenarios in Chapter 5. Such as noise, clutter and dual-polarimetric 

variables  
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Chapter 6 presents our work on spectral super-resolution that initially began as a 

CS application to the weather echo spectrum but later yielded several interesting results 

for other signal processing applications. We consider probabilistic priors, block priors 

and known poles, and present interesting theoretical results for spectral estimation using 

undersampled signals. Chapter 7 concludes the thesis by summarizing the results 

obtained and outlining future directions of this research. 
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CHAPTER 2 

SIGNAL THEORY OF WEATHER RADAR 

Although weather radar signals cannot be modeled as sparse in conventional 

dictionaries such as time and frequency, the backscattered signal in a weather radar is 

coherent (Keeler and Passarelli 1990). In other words, the motion among the precipitation 

scatterers is small compared to the radar wavelength, so their relative positions produce 

highly correlated echoes from sample to sample and scan to scan. This inherent 

redundancy in weather radar signals implies that the range-azimuth scan of precipitation 

echoes can be modeled as a low-rank matrix. 

The principle of a ground-based scanning weather radar is to transmit the 

electromagnetic waves at a wavelength 𝜆 of near-constant power 𝑃𝑡 in very short pulses 

of width 𝑇0 , concentrated into a narrow beam defined by its radiating antenna, at 

predetermined azimuthal and elevation angles at periodic intervals of pulse repetition 

time (PRT) 𝑇𝑠. As each transmit pulse travels away from the radar, the returned voltage 

𝑉𝑟(𝑡) at time 𝑡 of the electromagnetic waves backscattered from the targets within the 

sampling volume is measured by the radar. The difference between the times of 

transmitted and received pulses can be translated into distance or range to map the 

returned echo within the three-dimensional space comprising all sampling volumes 

(Doviak and Zrnić 1993, p. 64). 

Received Signal And Its Statistics 

In radar meteorology, the weather signals are defined as the composite of echoes 

from individual scatterers. These individual echoes constructively or destructively add to 

produce a complex composite phasor sample. The received voltage can, therefore, be 

expressed as (Bringi and Chandrasekar 2001, p. 221), 

 



www.manaraa.com

11 
 

 𝑉𝑟(𝑡) = ∑𝐴𝑘(𝜏; 𝑡)𝑒−𝑗2𝜋𝑓0𝜏𝑘𝑈𝑡𝑟(𝑡 − 𝜏𝑘)

𝑘

 (3) 

where 𝐴𝑘 is the scattering amplitude of the 𝑘th particle at range 𝑟𝑘 = 𝑐𝜏𝑘 2⁄ , 𝑓0 = 𝑐 𝜆⁄  is 

the frequency of the radar, 𝑐 is the speed of light and 𝑈𝑡𝑟 is the transmitted waveform. 

Further, the complex voltage sample can be expressed in terms of two real information-

bearing signals as 𝑉𝑟(𝑡) = 𝐼(𝑡) + 𝑗𝑄(𝑡) , where 𝐼(𝑡)  and 𝑄(𝑡)  are the in-phase and 

quadrature(-phase) components. The term "quadrature component" refers to the fact that 

it is in phase quadrature (+𝜋 2⁄ ) with respect to the in-phase component (Scherier and 

Scharf 2010, p. 9). 

The range 𝑟𝑘 of the independent scatterer being random, 𝑉𝑟(𝑡) is a complex sum 

of independent random variables. The central limit theorem (Papoulis and Pillai 2002) 

applies since, for the hydrometeor echoes, the number of scatterers is large and none of 

the variables is dominant. Therefore, the samples of 𝑉𝑟 form a Gaussian distribution with 

zero mean. If 𝑉1 , 𝑉2 , ⋯ , 𝑉𝑁  form a set of 𝑁  complex received voltage samples 

corresponding to 𝑁 consecutive transmitted pulses, then the probability density function 

of the signal vector 𝑉 = [𝑉1 𝑉2  ⋯ 𝑉𝑁] is a circular (Fjørtoft and Lopès 2001) or proper 

(Scherier and Scharf 2010, p. 53) complex Gaussian distribution with zero mean: 

 𝑝(𝑽) =
1

𝜋𝑁|𝑹𝑣𝑣|
exp(−𝑽𝐻𝑹𝑣𝑣

−1𝑽) (4) 

where 𝑹𝑣𝑣 is the 𝑁 × 𝑁 complex covariance matrix corresponding to the signal vector 𝑽. 

Since the 𝐼  and 𝑄  components are independent Gaussian random variables, it 

follows that the amplitude |𝑉| = (𝐼2 + 𝑄2)1 2⁄  is Rayleigh distributed while the phase 

𝜃 =  tan−1(𝑄 𝐼⁄ ) has a uniform distribution: 

 𝑝(|𝑉|) =
|𝑉|

𝜎2
exp (−

|𝑉|2

2𝜎2
) (5) 

 𝑝(𝜃) =  
1

2𝜋
 (6) 
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where 𝜎2 is the mean square value of 𝐼 (as well as 𝑄). 

Since the power 𝑃 is proportional to 𝐼2 + 𝑄2, it follows that 𝑃 is exponentially 

distributed with a mean value 𝑃 = 𝐸(𝑃) = 𝐸(|𝑉|2) = 2𝜎2:   

 𝑝(𝑃) =
1

2𝜎2
exp (−

𝑃

2𝜎2
) (7) 

Weather Radar Equation 

Apart from the precipitation and clouds, meteorological radars respond to a wide 

variety of scattering targets including insects and birds, smoke and aerosol particles, 

refractive index variations, chaff and ground targets. Probert-Jones (1962) derived the 

weather radar equation for precipitation scattering which relates the average received 

power 𝑃𝑟 (Watts) to the transmitted power 𝑃𝑡 (Watts) as a function of the range 𝑟0 (m) of 

the scatterer: 

 𝑃𝑟(𝑟0) = (
𝑐𝑇0

2
) [

𝑃𝑡𝐺0
2

𝜆2(4𝜋)3
] [

𝜋𝜃1𝜙1

8 ln 2
]
𝜋5|𝐾𝑝|

2
𝑍𝑒(𝑟0)

𝑟0
2  (8) 

where 𝐺0 denotes the peak antenna gain (dimensionless), 𝜃1 and 𝜙1 are the conventional 

half-power beam widths (rad), 𝑇0 is the pulse width (m) and 𝜆 is the wavelength of the 

radar (m). 𝐾𝑝  is the complex dielectric factor (dimensionless) of the target 

(conventionally, water) so that |𝐾𝑝|
2

= |(𝜀𝑟 − 1) (𝜀𝑟 + 2)⁄ |2  where 𝜀𝑟  is the relative 

permittivity. 𝑍𝑒 is the equivalent reflectivity factor (mm6m−3) defined as  

 𝑍𝑒(𝑟0) =
𝜆4

𝜋5|𝐾𝑝|
2 𝜂(𝑟0) (9) 

where 𝜂 is the back-scatter cross-section per unit volume (m2m−3). 

In arriving at equation (12), it is assumed that the targets are Rayleigh scatterers 

that completely and uniformly fill the resolution volume. We also assumed that the beam 

is Gaussian-shaped and that multiple scattering doesn’t occur. This equation also ignores 

the attenuation of the signal as it propagates through gases, particles and precipitation as 
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is usually observed in radars operating at X-band and, to a lesser extent, C-band. 

However, the effect of attenuation can be incorporated in equation (12) by multiplying 𝑍𝑒 

with an attenuation factor. The equivalent reflectivity factor 𝑍𝑒  is, by definition, 

proportional to the sixth moment of the raindrop diameter: 

 𝑍𝑒 = ∫ 𝑁(𝐷)𝐷6 𝑑𝐷

∞

0

 (10) 

where 𝑁(𝐷) (mm−1m−3) denotes the raindrop size distribution (DSD) in a unit volume 

(𝑚3 ) and 𝑁  is the diameter of the raindrop (mm ). Rainfall rate 𝑅  (mm h⁄ ) being 

proportional to the raindrop size, forms an empirical relationship with 𝑍𝑒 . The 

measurement of the received power 𝑃𝑟 in weather radar is, therefore, key to extract useful 

meteorological information. 

From equation (12), if 𝑃𝑟𝑒𝑓 (dBm) is the received power at the reference antenna 

port and 𝑅 (km) is the range of the radar to the resolution volume of the observation, then 

equivalent reflectivity factor 𝑍𝑒 (dBZ) is given by, 

 𝑍𝑒 = 𝑃𝑟𝑒𝑓 + 𝐶 + 20 log10 𝑅 (11) 

where 𝐶 (dB) is the radar constant given by (Bringi and Chandrasekar 2001, p. 334), 

 𝐶 =  10 log10 {
1

𝜋5|𝐾𝑝|
2 (

2

𝑐𝑇0
) [

4𝜋3𝑙𝑤𝑔
2

𝑃𝑡𝐺0
2 ]} (

8 ln 2

𝜋𝜃1𝜙1
) 𝜆21021 (12) 

where 𝑙𝑤𝑔 is the waveguide loss to compensate measurement at the reference plane. The 

minimum detectable reflectivity 𝑍𝑚𝑖𝑛 (dBZ) at a particular range is usually defined for 

signal-to-noise ratio (𝑆𝑁𝑅) of 0 dB. Therefore, the sensitivity of the radar is measured in 

terms of 𝑍𝑚𝑖𝑛.  

Scattering Polarimetry 

In contrast to conventional meteorological radars, the polarization diversity 

systems provide either for the variation of one or both of transmitted and received wave 
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polarizations, or provide for dual-channel reception of orthogonally polarized waves. 

These polarimetric techniques permit measurement of additional precipitation echo 

characteristics such as mean values and distributions of size, shape, spatial orientation 

and thermodynamic phase state of the scatterers. 

Wave Polarimetry Descriptors 

There are several descriptors of wave polarimetry (Cloude 2010). As the electric 

field evolves in three-dimensional space and time, it traces out a geometrical structure. If 

we look at the time variation of this structure in a fixed plan transverse to the direction of 

propagation and, without the loss of generality restrict attention to harmonic plane waves, 

then this locus is always elliptical. The sense of this polarization ellipse can be described 

in complex domain by Jones vectors for the completely polarized waves (such as in the 

case of deterministic scattering from hard targets). The polarization algebra which 

describes the effect of optical elements on polarization for completely polarized waves by 

manipulating Jones vectors using complex-valued 2 × 2 Jones matrices is called Jones 

calculus (Scherier and Scharf 2010, p. 214).  

a
Jones vectors cannot describe partially polarized or unpolarized signals. 

Table 1. Polarization algebra 

Polarization state Jones vector
a
 Stokes vector 

Horizontal linear [1, 0] [1, 1, 0, 0] 

Vertical linear [0, 1] [1, -1, 0, 0] 

Linear at 45 
[
1

2
,
1

2
] 

[1, 0, 1, 0] 

Right-hand (CW) circular 
[
1

2
,
−𝑗

2
] 

[1, 0, 0, -1] 

Left-hand (CCW) circular 
[
1

2
,
𝑗

2
] 

[1, 0, 0, 1] 
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The partially polarized or unpolarized waves (in case of random scattering by 

precipitation) are described by real-valued Stokes vectors. In 1892, Poincaŕe introduced a 

spherical visualization of the different states of polarization with the representation of 

equator as linear polarization, the North Pole as the right-circular polarization and the 

South Pole as left-circular polarization. The Stokes parameters are the Cartesian 

coordinates of the points on the sphere or, alternatively, of the parameters of the 

polarization ellipse. The analog calculus for the manipulation of Stokes vectors using 

real-valued 4 × 4 matrix is called the Mueller calculus (Scherier and Scharf 2010, p. 

214).  

Polarization state Jones vector
a
 Stokes vector 

Horizontal linear [1, 0] [1, 1, 0, 0] 

Figure 3. Dual-polarized radar antenna has two ports for the horizontal (H) and vertical 
(V) polarizations. Each port has a separate transmitter feed synchronized using a STAble 
Local Oscillator (STALO) or COHerent Oscillator (COHO). The waveform sequence at 

the bottom depicts alternate transmission.The received voltage 𝑉 is denoted by twin 
subscripts: received polarized state is followed by transmit polarized state. 
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a
Jones vectors cannot describe partially polarized or unpolarized signals. 

Table 1 shows how Jones and Stokes vectors are alternate forms of wave 

polarimetric descriptors. 

The scattering polarimetry i.e., the relationship between the incident wave and the 

response of the target to the electromagnetic excitation, is described using the scattering 

matrix representation. Sinclair matrix relates the scattered wave fields to the incident 

wave fields. In the radar community, the early application of matrix algebra to scattering 

is due to Edward Kennaugh (Cloude 2010, p. 2). In radar and antenna studies, the Sinclair 

matrix (Figure 3) is described in backscatter alignment or BSA system as 𝑺𝐵𝑆𝐴. 

Transmission Matrix And Radar Range Equation 

Apart from the backscatter matrix description of the target, the other radar 

polarimetry concept is based on the network theory and depends on the polarization 

transformation properties of the receiving antenna. The voltage induced in the horizontal 

(ℎ ) and vertical (𝑣 ) ports of the radar antenna by the back scattered wave can be 

described in terms of the transmission matrix 𝑻 in the linear polarization basis as (Bringi 

and Chandrasekar 2001, p. 178), 

 [
𝑉ℎ

𝑉𝑣
] =

𝜆𝐺

4𝜋𝑟2
[𝑻][𝑺𝑩𝑺𝑨][𝑻] [

𝑀ℎ

𝑀𝑣
] (13) 

where  

 𝑺𝐵𝑆𝐴 = [
𝑆ℎℎ 𝑆ℎ𝑣

𝑆𝑣ℎ 𝑆𝑣𝑣
] , (14) 

𝑟 is the propagation path distance to the fixed scatterer, 

Vertical linear [0, 1] [1, -1, 0, 0] 

Linear at 45 
[
1

2
,
1

2
] 

[1, 0, 1, 0] 

Right-hand (CW) circular 
[
1

2
,
−𝑗

2
] 

[1, 0, 0, -1] 

Left-hand (CCW) circular 
[
1

2
,
𝑗

2
] 

[1, 0, 0, 1] 
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𝐺  is the antenna gain (assumed to be same for both horizontal and vertical 

polarization ports), and 

𝑴 = [𝑀ℎ 𝑀𝑣]
𝑇 represents the state of transmit polarization ([𝑀ℎ = 1,𝑀𝑣 = 0] 

for horizontal and [𝑀ℎ = 0,𝑀𝑣 = 1] for vertical polarization). 

Covariance And Coherency Matrices 

Corresponding to the two states of polarization as given by 𝑴 , the received 

voltage is a vector of four random variables: 

 𝒗 = [𝑣ℎℎ 𝑣ℎ𝑣 𝑣𝑣ℎ 𝑣𝑣𝑣] (15) 

where the subscript ℎ𝑣 denotes vertical transmit state and horizontal receive state and so 

forth. The statistical properties of this random vector are expressed by its covariance 

matrix: 

 𝐸(𝒗𝒗𝐻) = 𝐸

[
 
 
 
 
|𝑣ℎℎ|2 𝑣ℎℎ𝑣ℎ𝑣

∗

𝑣ℎ𝑣𝑣ℎℎ
∗ |𝑣ℎ𝑣|

2

𝑣ℎℎ𝑣𝑣ℎ
∗ 𝑣ℎℎ𝑣𝑣𝑣

∗

𝑣ℎ𝑣𝑣𝑣ℎ
∗ 𝑣ℎ𝑣𝑣𝑣𝑣

∗

𝑣𝑣ℎ𝑣ℎℎ
∗ 𝑣𝑣ℎ𝑣ℎ𝑣

∗

𝑣𝑣𝑣𝑣ℎℎ
∗ 𝑣𝑣𝑣𝑣ℎ𝑣

∗

|𝑣𝑣ℎ|2 𝑣𝑣ℎ𝑣𝑣𝑣
∗

𝑣𝑣𝑣𝑣𝑣ℎ
∗ |𝑣𝑣𝑣|

2 ]
 
 
 
 

 (16) 

This vectorial formulation of voltage measurements can also be expressed in terms of two 

other scattering vectors: Pauli scattering vector 𝑘 and  Lexicographic scattering vector 

Ω (Lee and Pottier 2009). While 𝑘  representation is closely related to the physical 

properties of the scatterer, the Ω  representation is directly related to the system 

measurables.  

 k =
1

√2
[𝑆ℎℎ + 𝑆𝑣𝑣 𝑆ℎℎ − 𝑆𝑣𝑣 𝑆ℎ𝑣 + 𝑆𝑣ℎ 𝑗(𝑆ℎ𝑣 − 𝑆𝑣ℎ)]𝑇 (17) 

 Ω = [𝑆ℎℎ 𝑆ℎ𝑣 𝑆𝑣ℎ 𝑆𝑣𝑣]
𝑇 (18) 

In case of backscattering from reciprocal scatterers, 𝑆ℎ𝑣 = 𝑆𝑣ℎ  and the vectors can be 

represented as: 

 k =
1

√2
[𝑆ℎℎ + 𝑆𝑣𝑣 𝑆ℎℎ − 𝑆𝑣𝑣 2𝑆ℎ𝑣]

𝑇 (19) 
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 Ω = [𝑆ℎℎ √2𝑆ℎ𝑣 𝑆𝑣𝑣]
𝑇 (20) 

The statistical description of partial scattering polarimetry can then be represented as 

either coherency matrix 𝑱 =  𝑘 ∙ 𝑘𝐻 or the covariance matrix 𝚺 =  Ω ∙ Ω𝐻. Coherence is a 

synonymous term for correlation coefficient, but, in the frequency domain, coherence is 

more commonly used than correlation coefficient (Scherier and Scharf 2010, p. 211). 

However, radar observables are directly expressed in terms of the elements of the 

covariance matrix. For meteorological radars, since the individual scatterers are not only 

in relative motion but also fluctuate in the shape or orientation aspects, ensemble 

averaging should also be included in the statistical description. The backscatter 

covariance matrix is then given by (Bringi and Chandrasekar 2001, p. 137), 

 𝚺 = ⟨[

|𝑆ℎℎ|2 √2𝑆ℎℎ𝑆ℎ𝑣
∗ 𝑆ℎℎ𝑆𝑣𝑣

∗

√2𝑆ℎ𝑣𝑆ℎℎ
∗ 2|𝑆ℎ𝑣|

2

𝑆𝑣𝑣𝑆ℎℎ
∗ √2𝑆𝑣𝑣𝑆ℎ𝑣

∗

√2𝑆ℎ𝑣𝑆𝑣𝑣
∗

|𝑆𝑣𝑣|
2

]⟩ (21) 

where the angle brackets denote ensemble averaging. 

Dual-pol Radar Observables 

For the dual-polarization radar systems, any two arbitrary polarization states are 

admissible. However, in general these states are usually either circular or linear. Though 

circular polarization has been used in the past for rainfall estimation and hydrometeor 

classification (Hendry and Antar 1984), the linear horizontal and vertical polarizations 

have become prevalent recently. This is because the linear polarization states do not 

change as a function of propagation or, alternatively, they are the eigen-polarization 

states of the precipitation medium for electromagnetic wave propagation (Bringi and 

Chandrasekar 2001, p. 186). The dual-polarization system discussed here and later is 

therefore confined to linear polarization systems. Hence, the description of radar 

observables such as circular depolarization ratio (CDR) (Bringi and Chandrasekar 2001, 

p. 112) is excluded from the list here. 
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Once all the elements of the backscatter covariance matrix have been estimated in 

a so-called fully polarimetric system, several radar observables, which provide useful 

information about hydrometeor size, shape orientation, spatial distribution and 

thermodynamic state, can be defined. Following are some of the common dual-

polarization radar observables expressed in terms of the scattering matrix parameters.  

Copolar backscattering cross-section per unit volume (m2m−3): 

 𝐇𝐨𝐫𝐢𝐳𝐨𝐧𝐭𝐚𝐥: 𝜂ℎℎ = 〈𝑛4𝜋|𝑆ℎℎ|2〉 (22) 

 𝐕𝐞𝐫𝐭𝐢𝐜𝐚𝐥: 𝜂𝑣𝑣 = 〈𝑛4𝜋|𝑆𝑣𝑣|
2〉 (23) 

where 𝑛 is the number concentration of the particles (m−3). 

Cross-polar backscattering cross-section per unit volume (m2m−3): 

 𝜂ℎ𝑣 = 〈𝑛4𝜋|𝑆ℎ𝑣|
2〉 (24) 

 𝜂𝑣ℎ = 〈𝑛4𝜋|𝑆𝑣ℎ|2〉 (25) 

 𝜂ℎ𝑣 = 𝜂𝑣ℎ (26) 

where the last equality is due to (Tragl 1990). 

Copolar reflectivity (mm6m−3 or dBZ): 

 𝑍ℎ =
𝜆4

𝜋5|𝐾𝑝|
2 𝜂ℎℎ (27) 

 𝑍𝑣 =
𝜆4

𝜋5|𝐾𝑝|
2 𝜂𝑣𝑣 (28) 

Cross-polar reflectivity (mm6m−3 or dBZ): 

The cross-polar reflectivity measures the sum of contributions from different scatterers in 

the orthogonal polarization (first subscript) than the polarization the scatterers are 

illuminated with (second subscript). 
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 𝑍ℎ𝑣 =
𝜆4

𝜋5|𝐾𝑝|
2 𝜂ℎ𝑣 (29) 

 𝑍𝑣ℎ =
𝜆4

𝜋5|𝐾𝑝|
2 𝜂𝑣ℎ (30) 

Differential reflectivity (dB): 

The single measure of reflectivity (Zh or Zv) at one polarization (usually horizontal 

polarization) being dependent on both 𝑛 and 𝐷 can lead to large errors in the estimate of 

attenuation and rain rate. To overcome this problem, the dual-polarimetric weather radars 

make use of the oblateness of the rain drops and its monotonic relationship with the 

equivalent drop diameter (Pruppacher and Beard 1970). The oblateness gives rise to a 

difference in the back-scatter signal between horizontal and vertical polarizations. This 

additional parameter measured by a dual-polarization radar, is called the differential 

reflectivity Zdr (Wakimoto and V.N. Bringi 1988) 

 𝑍𝑑𝑟 = 10 log10 (
𝜂ℎℎ

𝜂𝑣𝑣
) (31) 

Linear depolarization ratio (dB): 

For scatterers which have a finite canting angle (i.e. with their axis of symmetry tilted 

from the vertical), the scattering process will cause a small but finite fraction of the 

transmit (or incident) energy to be depolarized, the contribution of which could be 

resolved in the direction of the orthogonal polarization. The amount of depolarization, 

measured as linear depolarization ratio (LDR), will depend on a number of factors, 

namely, the hydrometeor size, the axis ratio, the degree of canting and the radar beam 

elevation. 

 𝐿𝐷𝑅𝑣ℎ = 10 log10 (
𝜂𝑣ℎ

𝜂ℎℎ
) (32) 

 𝐿𝐷𝑅ℎ𝑣 = 10 log10 (
𝜂ℎ𝑣

𝜂𝑣𝑣
) (33) 

Copolar correlation coefficient (dimensionless): 
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Another parameter which can be measured by a dual-polarization radar is the co-polar 

correlation coefficient 𝜌𝑐𝑜  (zero-lag if polarization switching is used), which is the 

correlation between horizontally and vertically polarized return signals. This is defined as 

(Sachidananda and Zrnić 1985). The 𝜌𝑐𝑜  is therefore useful for identifying non-rain 

hydrometeors. Measurements made in rain using horizontally pointing radar beam 

indicate that 𝜌𝑐𝑜 can range from 0.98 (Balakrishnan and Zrnić 1990) to 0.995 (Illingworth 

and Caylor 1991) (using a high resolution S band radar). 

 𝜌𝑐𝑜 =
|〈𝑆ℎℎ𝑆𝑣𝑣

∗ 〉|

√〈|𝑆ℎℎ|2|𝑆𝑣𝑣|2〉
 (34) 

Differential propagation phase (): 

The oblateness of the drops also causes a difference in the amplitude and phase of the 

propagating signal, with the result that the horizontally polarized wave will suffer a phase 

lag relative to the vertically polarized wave. This gives rise to differential propagation 

phase ( 𝜙𝑑𝑝 ) between the H and V polarized waves. In rainfall, the differential 

propagation phase 𝜙𝑑𝑝 is known to be a monotonically increasing function of range. If 

the rain rate is uniform along the path, 𝜙𝑑𝑝 increases by a fixed amount per unit distance 

along range. If we define 𝜙𝐻𝐻 and 𝜙𝑉𝑉 cumulative differential phase shift for the total 

round trip between the radar and the resolution volume for horizontal and vertical 

polarizations respectively, then 

 𝜙𝑑𝑝 = 𝜙𝐻𝐻 − 𝜙𝑉𝑉 (35) 

Backscatter differential phase (): 

Backscatter differential phase (𝛿) becomes significant in Mie region, i.e. when the radar 

wavelength is comparable to the size of the scatterers. It is largely negligible in rain at S-

band whereas at X-band and even at C-band, it can become noticeable in the measured 

𝜙𝑑𝑝 range profiles as a local perturbation on the monotonically increasing differential 
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propagation phase. Although not used for quantitative estimation of rainfall rates, the 

parameter 𝛿 helps to identify non-precipitation echoes, such as those arising from birds. 

 𝛿 = ∠(〈𝑆𝑣𝑣𝑆ℎℎ
∗ 〉) (36) 

Co-cross-polar correlation coefficients (dimensionless): 

These quantities are primarily dependent on the characteristics of hydrometeor 

orientation, i.e. the canting angle distribution. In particular, the mean and the rms width 

of the canting angle distribution in rain can be estimated approximately from 𝜌𝑐𝑥
ℎ  and 𝜌𝑐𝑥

𝑣  

(Ryzhkov et al. 2002), when combined with 𝑍𝑑𝑟  and 𝐿𝐷𝑅 . Other applications are (i) 

detection of aligned crystals – indicated by pronounced 𝜌𝑐𝑥
ℎ  and 𝜌𝑐𝑥

𝑣  signatures – which 

could be used to locate electrically charged regions in clouds and (ii) radar hardware 

assembly quality checks (in particular antenna/feed) such as undue coupling between the 

two orthogonal channels. 

 𝜌𝑐𝑥
ℎ =

|〈𝑆ℎℎ𝑆ℎ𝑣
∗ 〉|

√〈|𝑆ℎℎ|2|𝑆ℎ𝑣|2〉
 (37) 

 𝜌𝑐𝑥
𝑣 =

|〈𝑆𝑣𝑣𝑆ℎ𝑣
∗ 〉|

√〈|𝑆𝑣𝑣|2|𝑆ℎ𝑣|2〉
 (38) 

Mean Doppler velocity (m ∕ s): 

For a symmetric Doppler spectrum , the estimate of mean velcoity can be calculated from 

the autocorrelation at lag 1 of received complex voltage time-series at horizontal 

polarization.  

 𝑣̂ = −
𝜆

4𝜋𝑇𝑠
∠(𝑟𝑣𝑣[1]) (39) 

where 𝜆 is the radar wavelength, 𝑇𝑠 is the pulse repetition or sampling time and 𝑟𝑣𝑣[1] is 

the autocorrelation of received voltage time-series at lag 1.  

Spectrum width (m ∕ s): 
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The Doppler spectrum of weather echoes has a Gaussian shape. The variance of this 

distribution or the spectrum width is the measure of shear and turbulence. Also, a faster 

antenna rotation rate has the effect of broadening the weather echo spectrum. For the 

uniform pulsing scheme, the estimate of the spectrum width is calculated using 

autocorrelation at lag 0 and lag 1 for received voltage time-series horizontal polarization: 

 𝜎𝑣̂ =
𝜆

2𝜋𝑇𝑠√2
[ln |

𝑟𝑣𝑣[0]

𝑟𝑣𝑣[1]
|]

1
2⁄

 (40) 

Evolution Of Short Wavelength Weather Radars 

It is widely accepted that precipitation monitoring is difficult because of its high 

spatial and temporal variability (see e.g., Wilson and Brandes 1979; Zawadzki 1982; 

Krajewski and Smith 2002); nonetheless, rainfall remains one of the most critical 

variables in many hydrological applications (Battan 1973; Chow et al. 1988).  A number 

of studies and experiments have used rain gauges and disdrometers to establish the 

spatio-temporal variability of rainfall with direct in situ measurements (Ciach and 

Krajewski 1999a, b); a detailed exposition of these ground-based methods can be found 

in Habib et al. (2010).  However, these instruments do not yield precipitation 

measurements in the space-time continuum.  On the other hand, while the wide use of 

modern weather radar systems has enabled continuous rainfall measurements in the 

space-time domain (Doviak and Zrnić 1993; Bringi and Chandrasekar 2001; Bringi et al. 

2007), this feature compromises the accuracy of the radar rainfall products when 

compared with the in situ estimates (see e.g., Krajewski et al. 1996; Seo and Smith 1996; 

Smith et al. 1996; Gebremichael and Krajewski 2004; Tabary 2007).  We refer the reader 

to Villarini and Krajewski (2010) for an exhaustive review of the errors in radar rainfall 

estimates. 

High-resolution fast-scanning radars should be deployed to combat the differences in 

spatio-temporal resolutions of radar and rain-gauge sampling regimes.  However, the 
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sampling geometry, resolution, and temporal coverage of the conventional S- and C-band 

weather radars, which constitute many national weather radar networks (Klazura and Imy 

1993; Lapczak et al. 1999; Gekat et al. 2004), are designed primarily to observe 

mesoscale weather phenomena.  Further, popular NEXRAD hourly rainfall estimates are 

available at 4 km × 4 km resolution (Lin and Mitchell 2005), while there is evidence that 

rainfall variability is significant below this resolution (Krajewski et al. 2003).  The low 

resolution of these radars is incapable of detecting microbursts, scattered storms, or other 

weather events (such as tornadoes) at far ranges (e.g., > 50 km) in the lower troposphere.  

More importantly, detailed observations of rainfall at the near-ground level remain 

undetected in S- and C-band radars at far ranges.  Therefore, it has become increasingly 

more common to use shorter wavelengths, such as those in the X- and Ku-bands, to 

enhance the S/C-band rainfall observations and monitor the precipitation variability at 

scales smaller (e.g. basin) than the available products from the longer-wavelength radars 

(see e.g,. McLaughlin et al. 2009; Maki et al. 2010; Yoshikawa et al. 2010). 

Employing a network of several identical units often compensates for X-band radars’ 

lack of spatial coverage.  This strategy has proved economically and operationally 

feasible, as demonstrated by X-band networks such as those used by the Center for 

Collaborative Adaptive Sensing of the Atmosphere (CASA) Integrated Project 1(IP1) 

(McLaughlin et al. 2009), X-RAIN (X-band Polarimetric RAdar Information) (Maki et al. 

2010), and the Tropical Radar Network (TropiNet) (Galvez et al. 2009).  The objective of 

these X-band weather radar networks is to retrieve meteorological echoes in the lower 

troposphere and to adapt to rapidly changing, severe weather.  The hydrological quest 

(Krajewski et al. 2010) to finely resolve rainfall in space and time remains secondary to 

the stated objectives of such X-band networks.  Therefore, the research in hydrology 

would benefit greatly from an X-band weather radar network that focuses exclusively on 

the hydrological aspects of radar rainfall estimation. 

file:///E:/makalu/Journals/JHM_XPOL/xpol_jhm_paper_v08.doc%23_ENREF_39
file:///E:/makalu/Journals/JHM_XPOL/xpol_jhm_paper_v08.doc%23_ENREF_37
file:///E:/makalu/Journals/JHM_XPOL/xpol_jhm_paper_v08.doc%23_ENREF_60


www.manaraa.com

25 
 

Iowa XPOL System 

With the objective of conducting hydrology-focused research and obtaining accurate 

quantitative estimation of rainfall at a high temporal and spatial resolution, The 

University of Iowa has acquired four scanning, mobile, X-band polarimetric (XPOL) 

Doppler weather radars.  Iowa procured these XPOLs from Prosensing Inc. under the 

Major Research Instrumentation (MRI) grant funded by the National Science Foundation 

(NSF).  The Iowa XPOL system’s distinct engineering and operational abilities facilitate 

the study of near-ground hydrological processes at smaller scales.  Several of the XPOL 

radar system’s features make it more appealing to the hydrology community than the 

existing networks of X-band weather radars.  Firstly, while many existing X-band 

weather radars are installed on tower-tops, the Iowa XPOL radars are mounted on mobile 

platforms.  Consequently, Iowa XPOLs can be deployed at any location of interest and 

provide better near-ground observations than those basins that were previously covered 

by only 4 km × 4 km NEXRAD pixels.  Secondly, because XPOL systems can acquire 

data at a programmable range oversampling which can be as low as 7.5 m, they provide 

more accurate polarimetric estimates without decreasing the scan rate (Torres and Zrnić 

2003).  Thirdly, unlike existing X-band networks, the Iowa XPOL network provides very 

high-resolution precipitation profiles of up to 15 m range resolution.  In a previous study, 

Schneebeli et al. (2013) used an X-band radar unit similar to the Iowa XPOLs to observe 

high-resolution vertical profiles in the alpine region.  The Iowa XPOLs can facilitate 

similar studies for the Great Plains region of the Midwestern United States and capture 

multiple high-resolution snapshots of the same storm from different angles.  The radars 

are intended to serve multiple areas of hydrological research, including uncertainty 

modeling, urban hydrology, flood and flash-flood prediction, and soil erosion. 

X-band weather radars have been used for important hydrological studies concerning 

the spatio-temporal variability of rainfall (see e.g., Delrieu et al. 1999; Berne and 

Uijlenhoet 2006; Uijlenhoet and Berne 2008; Scipión et al. 2013).  A detailed 
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observational study using an X-band radar operating at a spatial resolution of 120 m and 

temporal resolution of 16 s can be found in Van de Beek et al. (2010).  The CASA radars 

typically operate at range resolutions of 100 m or 50 m with a scan rate of 12°s
-1

 

(McLaughlin et al. 2009).  Similarly, mobile X-band radars such as Agenzia Regionale 

per la Protezione Ambientale (ARPA) Piemonte (ARX), operating at a range resolution 

of 125 m and a beamwidth of 1.3°, have previously been used (Cremonini et al. 2010).  

Kabeche et al. (2010) have analyzed quantitative precipitation estimates obtained from a 

network of X-band radars operating at 300 m.  Pazmany et al. (2013) have deployed a 

mobile X-band radar that employs a traveling wave tube amplifier (TWTA) to study 

severe storms and tornadoes at a minimum range resolution of 15 m and azimuthal scan 

rates of 180°s
-1

.  (Borque et al. 2014) have also actively used an X-band network to assist 

in cloud radar studies.  Compared to these existing applications, the mobile Iowa XPOLs 

push the range resolutions at 3 cm regimes to smaller scales, of the order of 15 m, 

enabling detection of detailed precipitation structures at finer scales with an acceptable 

accuracy.  While the cross-beam resolution clearly remains limited here, the flexibility in 

deployment and operation of each of these low-cost XPOL units aids in achieving our 

research goals that we briefly describe in the following subsection. 

Scientific Objectives 

As previously discussed, while conventional lower frequency (S- and C-band) 

weather radar data are limited to 100-300 m range resolution, the Iowa XPOL system can 

provide radar rainfall data at higher range resolutions.  Further, the radars are configured 

to observe target-of-opportunity storms from multiple look-angles within narrow high 

spatio-temporal windows.  Such observations of the same precipitation event with several 

radars can mitigate signal attenuation due to precipitation at the X-band (Krajewski 2007).  

The Iowa XPOL data can be used to model the spatial dependence of the errors at smaller 

scales, which is useful when constructing input for ensemble-based predictive models.   
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Another key scientific goal is to understand the scaling behavior of rainfall below the 

scale of about 1 km.  The XPOLs are capable of range over-sampling up to 7.5 m and 

making observations at the range resolution of 30 m. There are very few studies that have 

been carried out at this scale. For example, a range spacing of 7.5 m can provide several 

data points within 0.5 km sampling radius around a range gage. This has a potential of 

bringing the radar measurements even closer to the rain gage in space-time continuum. 

Indeed, the rain gages were strategically placed within the coverage of XPOLs to 

generate this kind of data during the IFloodS campaign. Eventually, the fully-operational 

XPOLs are expected to aid in more elaborate applications of urban hydrology and 

flash-flood prediction. 

Technical Specifications 

Table 2 lists the salient technical parameters of the Iowa XPOL radars.  Each of the 

Iowa XPOL radars is deployed on a flatbed trailer mounted system and is capable of 

taking measurements at remote and secure locations where power and Internet facilities 

are available.  The trailer platform enables the use of a parabolic antenna dish that is 6 ft. 

in diameter - slightly larger than the 4 ft. dish used in tower-mounted X-band radars 

(McLaughlin et al. 2009) - leading to enhanced azimuthal resolution.  The radars are 

equipped with an on-site uninterrupted power supply (UPS) and can be controlled and 

monitored remotely over the Internet.  Essentially, each unit is a self-reliant system with 

an on-site, on-demand archiving capability for raw time series and polarimetric products, 

GPS (Global Positioning System) enabled time and location information, and Internet 

access to archived data.  The transmitter is magnetron-based with a peak output power of 

25 kW.  The radars can operate in staggered pulse repetition time (PRT) (Zrnić and 

Mahapatra 1985) and dual-PRF pulsing modes and can process data using either standard 

pulse-pair or spectral mode techniques.  An advanced signal processor computes the 

polarimetric estimates in multiple modes such as auto-covariance and spectral processing 
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(Doviak and Zrnić 1993) at selectable range resolutions and range oversampling ratios.  

At the default range resolution of 75 m, the radars have a clear air sensitivity of -5 dBZ at 

a range of 10 km, which allows the radar to observe light to heavy precipitation up to a 

maximum unambiguous range (Rmax) of 40 km (Figure 4).  

Figure 4. Expected sensitivity of Iowa XPOL radars for different range resolutions (Δr). 

The XPOL radar has a magnetron-based transmitter system, whose output frequency 

is nominally centered around 9.41 GHz.  The receiver is composed of two physically 

separate, identical RF (Radio Frequency) hardware paths consisting of an assembly of 

microwave limiters and low noise amplifiers (LNA).  The output of the radar STALO 

(STAble Local Oscillator) – in this case, a dielectric resonant oscillator (DRO) – is 

passed through a receiver splitter to the microwave mixers of horizontal (H) and vertical 

(V) polarization chains in order to translate the signal from the RF to an IF (Intermediate 

Frequency) of 60 MHz.  The transmit signal is also translated to 60 MHz and then 
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sampled in the V-channel IF using a Single-Pole-Double-Throw (SPDT) switch that is 

located before the microwave IF filters.  A digital receiver subsamples the 60 MHz IF 

signal at the sampling rate of 80 MSPS (Mega Samples Per Second).  For an overview of 

the theory and detailed operation of weather radar digital receivers and related 

terminology used here, please refer to Mishra (2012).  The downconverted in-phase (I) 

and quadrature-phase (Q) data are downsampled using a Cascaded Integrator-Comb 

(CIC) filter chain and are eventually filtered by a Finite-Impulse Response (FIR) 

decimator operating at a programmable bandwidth and decimation rate.  The digital data 

processor receives the I/Q time series data over a Peripheral Component Interconnect 

eXtended (PCI-X) interface. 

Technical Characteristic Description 

System 

Nominal Rmax 40 km 
Range resolution Selectable 15-150 m 

Sensitivity -5 dBZ at 10 km at range resolution of 75 m 

Mounting platform 8 x 10 ft customized trailer 

Power supply On-site and trailer-mounted UPS 

Time-location sync source On-site GPS 

Radar and antenna controller Remote operated web-interface 

Antenna 

Shape Parabolic  
Polarization Dual-polarized 

Diameter 6 ft 

Gain 42 dBi 

3-dB beam width 1.3-1.5° 

Cross-polarization isolation ~30 dB 

Maximum Voltage Standing Wave 
Ratio (VSWR) 

~1.25 

Scanning Az: 0-360°, El: 0-90° 

Transmitter 

Operating frequency 9.41 GHz 
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Transmitter Magnetron 
Peak power Pt = 25 kW 

Pulsing schemes Staggered PRT and dual-PRF 

Receiver 

RF Receiver Gain ~33 dB 
Cross-channel receiver isolation >50 dB 

Noise Figure ~3 dB 

Dynamic range 80 dB 

Digital noise floor -84 dBm (at 2 MHz receiver bandwidth) 

Signal and data processor 

Digital receiver bandwidth Selectable 2-20 MHz 
Range oversampling Programmable 7.5-75 m 

Processing modes Standard pulse pair, dual pulse pair, FFT 

mode 
Data Products 

Data archiving 
On-site on-demand for raw timeseries and 
processed products 

Archived products 

Standard moments: Equivalent reflectivity 
factor (Zh, Zv), Doppler velocity (ν) and 
Doppler spectrum width (σν)  
Dual-pol products: Differential reflectivity 
(Zdr), copolar correlation coefficient (ρhv) and 
differential propagation phase (ϕdp) 
Derived products: Instantaneous rainfall rate, 
specific differential phase (Kdp) 
 
 

Available data format NetCDF 

Table 2. Technical specifications of a typical unit in the Iowa XPOL radar system. 
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CHAPTER 3 

CS CONSIDERATIONS FOR WEATHER RADAR 

As discussed in Chapter 1, application of CS to the radar scenario requires 

sparsity of target echoes in a certain domain. Also, the measurements should be 

incoherent. In this chapter, we examine these two considerations for weather radar. 

Sparsity: Point Targets Versus Weather 

Most of the current research on applying CS to radar applications is concentrated 

on point target radars (Ender 2010). For example, an aircraft surveillance radar display 

typically tracks a finite number of aircrafts that is very small compared to the totalk 

number of resolution cells. Figure 5(a) illustrates a typical radar display for an aircraft 

surveillance radar, in which every red dot indicates an aircraft. For the radar scenario, 

spatial domain has same connotation as the time domain since every spatial sample is 

acquired at a different time. Therefore, one can also refer this dictionary as range-time or 

space-time. It is obvious that the point target radar signals are sparse in spatial range-time 

domain. The radar signals from point targets are sparse in frequency domain, too 

(Fannjiang et al. 2010). This is because the corresponding spectrum shows only a finite 

number of Doppler frequencies, as shown in simulation of Figure 6(a). 

The recognizable sparsity of point targets is not available for volumetric targets 

such as precipitation. Figure 5(b)-(d) show that the precipitation target need not always 

be sparse in spatial domain. Also, unlike point targets, the power spectral density of the 

weather echo is Gaussian (Doviak and Zrnić 1993) and occupies a continuum of 

spectrum, as shown in simulation of Figure 6(b). Therefore, in general, precipitation is 

neither sparse in spatial domain nor in Doppler domain. The CS techniques exploiting 

range-time and frequency sparsity of point target radars are, thus, not directly applicable 

to weather radars.  
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Figure 5(a) Point targets on a radar display. (b) Spatially sparse precipitation. (c) 
Precipitation is sparse along only some of the range profiles. (d) No spatial 
sparsity for precipitation. The precipitation data shows the horizontal 
reflectivity for the storms observed on Jun 13, 2013 by the Iowa XPOL-2 
radar during the NASA IFloodS campaign (Mishra et al. 2014). 

Figure 6. Typical Doppler spectra for (a) point targets and (b) weather echo in white 
noise using pulse repetition frequency = 2 kHz for an X-Band radar. Two 
incoming and two outgoing point targets are shown in (a). In (b), the 
estimated parameters are velocity ≈6 m/s and spectrum width ≈ 3.5 m/s. The 
simulation of weather echoes follows the algorithm specified in 
(Chandrasekar et al. 1986).  

Some of the existing research on volumetric target CS-radar is dedicated to 

meteor detection radars. Meteors are not point targets, but they are localized in range-

time. A joint time-frequency sparsity of such targets has been exploited to extract the 

benefits of the high-resolution radar, as shown in (Volz and Close 2012). Although 

highly localized precipitation can appear sparse in joint time-frequency domain, as 

depicted by the Short-Time Fourier Transform (STFT) of weather echo in Figure 7, such 
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Figure 7. STFT of precipitation echoes. The precipitation signal appears at 23-40 km and 
is localized in Doppler domain. The straight lines in nearer range correspond 
to ground clutter and other interference. This data was collected by XPOL-2 
on Jun 13, 2013. 

scenarios are quite infrequent in observed weather.  

There have been attempts to use CS in weather radars for specialized tasks such as 

refractivity retrieval (Yu et al. 2011) and imaging using phased-array antennas (Ozturk et 

al. 2013). A related application is downscaling (Venugopal et al. 1999), where the 

sparsity of precipitation image in wavelet domain is used to form a high-resolution 

precipitation image from low-resolution measurements (Ebtehaj et al. 2012). 

Downscaling adds details to a low-resolution image using CS, but the radar data is 

obtained using conventional scanning. Further, downscaling operates on the image of the 

data rather than directly on received radar signal. 
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Incoherence Considerations 

There are several incoherence strategies discussed in other CS-based radars. One 

of the strategies to ensure incoherence for point target radars is to transmit an incoherent 

waveform such as an “Alltop” sequence (Herman and Strohmer 2009). This particular 

approach to CS-based radar increases the measurement resolution and simplifies the radar 

hardware by eliminating the matched filter stage in the receiver. Another approach to 

incoherence samples the same target scene using multiple radars on ground (Yu et al. 

2012b). The incoherence of the measurements can also be achieved by deploying an array 

of antenna elements. By randomly choosing the elements of antenna array transmit-and-

receive, such a CS-based radar is shown to recover the sparse or approximately sparse 

target scene (Fannjiang et al. 2010). This strategy is the easiest choice to achieve 

incoherence in spaceborne weather radars, since they invariably always employ phased 

array antenna. 

For the ground-based weather radars, incoherence can be achieved by randomly 

selecting only a few time samples to pass through the receiver. This approach however 

would require scanning the entire target scene and then discard many samples randomly. 

An alternative can be setting the radar antenna to scan at a very high scan rate. In general, 

a scanning weather radar produces meteorological estimates by averaging over several 

azimuths. Therefore, should the radar to scan at a very fast scan rate, it would then dwell 

less on each azimuth and would randomly “miss” other azimuths (which would have 

been dwelled by the radar at a normal scan rate). This scan strategy would then produce 

randomly sensed samples (fewer than a slower scan rate) for each range cell. 

In a possible scenario when such a scan is, indeed, constructed, the other pertinent 

question to ask is how one can construct the distributed weather echoes from a sample of 

its entries. We address this question in next chapter. 
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CHAPTER 4 

MATRIX COMPLETION FOR CS-BASED WEATHER RADAR 

Although weather radar signals cannot be modeled as sparse in conventional 

dictionaries such as time and frequency, the backscattered signal in a weather radar is 

coherent (Keeler and Passarelli 1990). In other words, the motion among the precipitation 

scatterers is small compared to the radar wavelength, so their relative positions produce 

highly correlated echoes from sample to sample and scan to scan. This inherent 

redundancy in weather radar signals implies that the range-azimuth scan of precipitation 

echoes can be modeled as a low-rank matrix.  

Weather Signal As a Low-rank Matrix 

Low-rank matrices are the multi-dimensional equivalents of one-dimensional 

sparse vectors. Given a matrix 𝑀 ∈ ℝ𝑚×𝑛, its singular value decomposition (SVD) is 

given by, 𝑀 = 𝑈𝑆𝑉𝑇 , 𝑈 ∈ ℝ𝑚×𝓇 , 𝑉 ∈ ℝ𝓇×𝑛, and 𝑆 = diag(𝜎1, ⋯ , 𝜎𝓇),  where 𝜎1 ≥

⋯ ≥ 𝜎𝓇 > 0 are the unique singular values and 𝓇 ≤ min(𝑚, 𝑛) is the rank of the matrix. 

For a low-rank matrix, most diagonal elements of 𝑆 are zero such that, 𝓇 ≪ min(𝑚, 𝑛). 

The best 𝓇′-rank approximation 𝑀̃ of the matrix 𝑀 is given by zeroing out the 𝓇 − 𝓇′ 

smallest singular values so that, 𝑀̃ = 𝑈𝑆̃𝑉𝑇and 𝑆̃ = diag(𝜎1, ⋯ , 𝜎𝓇′ , 0, ⋯ ,0).  

This sparsity has been illustrated in Figure 8(a) using real radar data from Iowa 

XPOL-2 radar. Figure 5(a), depicted as spatially non-sparse precipitation shows original 

observations of horizontal reflectivity Zh which is a 1930 (range gates) by 413 (azimuthal 

rays) matrix. A plot of eigen-values of this matrix Figure 8(b) shows a large fraction of 

eigen-values are very small or close to zero. This is due to the highly correlated nature of 

weather signal both temporally as well as spatially. Figure 2 shows the effect of low-rank 

approximation on the original weather echo. During eigen-decomposition of the matrix, 

we retain only a fraction of the eigenvalues and set others to zero. Subsequent figures are 

derived at various degrees of low-rank approximations of the original reflectivity matrix. 
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We note that a very small fraction of detailed features are lost, and low-rank versions are 

statistically identical to the original matrix, illustrating the sparsity of the real radar data. 

Figure 8. (a) Spatially non-sparse precipitation signal (b) A plot of absolute value of 
eigenvalues of the data matrix plotted in (a). 

 

 

 

 

 

 

 

 

 

Figure 9. (a) Observed Zh on Iowa XPOL-2 radar on Jun 13, 2013. Low-rank Zh using (b) 
40% (c) 25% (d) 5% of the significant eigen-values. 
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Reconstruction Algorithm 

Current research in matrix completion shows that it is possible to recover all the 

elements of the low-rank matrix from a sample of its entries (Candès and Recht 2009). 

Let Ω denote the set of the locations of the partially observed entries of the original low 

rank matrix M. Then, intuitively, recovering M corresponds to the rank minimization 

problem:  

(𝑃0
′) 

minimize 𝑟𝑎𝑛𝑘(𝑿)  

subject to 𝑋𝑖𝑗 = 𝑀𝑖𝑗 , (𝑖, 𝑗) ∈ Ω 
(41) 

However, like problem 𝑃0, rank minimization is also intractable and very difficult 

to solve. The approach to low-rank matrix completion is therefore to solve the matrix 

equivalent of problem 𝑃1, i.e., minimization of the nuclear-norm ‖𝑿‖∗ = ∑ 𝜎𝑘𝑘    where 𝜎𝑘 

denotes the k
th

 eigen-value:  

(𝑃1
′) 

minimize ‖𝑿‖∗ 

subject to 𝑋𝑖𝑗 = 𝑀𝑖𝑗 , (𝑖, 𝑗) ∈ Ω  
(42) 

This approach for weather radars is illustrated in Figure 10. Figure 10(a) 

reproduces original Zh from Figure 8(a). Figure 10(c) shows 30% of entries sampled 

randomly from the low-rank approximation Figure 10(b) of Figure 10(a). Here, solely for 

illustration purposes, we chose the 25% low-rank approximation shown in Figure 9(c). 

Figure 10 (d) shows recovery of remaining entries based on partial observations of Figure 

10(c). As the matrix size grows bigger, the nuclear norm minimization requires faster 

algorithms. Figure 10(d) was generated using singular value thresholding (SVT) (Cai et 

al. 2010) – one of the several popular large-scale matrix completion algorithms that rely 

on nuclear norm minimization. Figure 10(e), (f) and (g) show the distribution of Zh for 

Figure 10(a), (b) and (d). Although the illustrated reconstruction uses a low-rank 

approximation 𝑍̃ℎ as matrix 𝑀, the results are not very different if 𝑍ℎ itself is used with 
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some modifications to problem 𝑃1 (the relative errors 𝜀1 and 𝜀2 are of the same order), as 

we show next. The very close similarity of the reconstructed data distribution with the 

original clearly illustrates the potential of CS for weather radars. The low-rank nature of 

weather signal enables application of various other extension of CS to weather radar. We 

discuss these extensions in Chapter 5. 

Figure 10. Illustration of reconstruction of precipitation echo using matrix completion. (a) 

Original 𝑍ℎ (b) 𝑍̃ℎ: low rank approximation of original 𝑍ℎ using only 25% 

singular values (c) 𝑃Ω(𝑍̃ℎ): Randomly sub-sampled entries of the low-rank 𝑍̃ℎ 

matrix. (d) 𝑍̂ℎ: Recovered 𝑍ℎ (e) Distribution of 𝑍ℎ for original data matrix (f) 

Distribution of 𝑍̃ℎ for low-rank approximation of original data matrix (g) 

Distribution of 𝑍̂ℎ for recovered data matrix. The two error metrics 𝜀1 and 𝜀2 

are of the same order. 

In practice, the radar would not be sampling from the low-rank approximation of 

the data. The radar samples weather directly, and therefore, the reconstruction should be 
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based on sparse sampling of measured data. Figure 11 illustrates the reconstruction 

directly from the original matrix using the Low Rank Matrix Fitting (LMaFit) (Shen et al. 

2014; Wen et al. 2012). This algorithm is much faster than SVT but comes at the expense 

of the accuracy. We note that the error increases by an order using the LMaFit algorithm 

that contains a collection of solvers that can be used to solve various classes of low-rank 

matrix optimization problems. The same reconstruction using SVT algorithm exhibits 

lower errors. Still, nuclear norm minimization problems can become excessively costly as 

problem sizes and ranks increase. As a result, algorithms based on nuclear norm 

minimization so far only have limited capacity for solving large-scale problems due to 

their slow speed when ranks are not extremely low. 

 

 

Figure 11. Illustration of reconstruction of precipitation echo using matrix completion by 

sampling directly from the original matrix. (a) Original 𝑍ℎ (b) 𝑃Ω(𝑍ℎ): 

Randomly sub-sampled entries of the low-rank 𝑍̃ℎ matrix. (c) 𝑍̂ℎ: Recovered 

𝑍ℎ (d) Distribution of 𝑍ℎ for original data matrix (e) Distribution of 𝑍̂ℎ for 

recovered data matrix. 
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Comparison With Related Research 

It is natural to compare the matrix completion for precipitation echoes with some 

related algorithms such as radar data compression (Kruger and Krajewski 1997), image 

interpolation (Sonka et al. 2014) and downscaling (Ebtehaj et al. 2012). However, there 

are qualitative differences in the applicability of these algorithms for the problem we 

intend to address. Therefore, these comparisons are at best red-erring in this research. We 

now explain the problems with each of these algorithms. 

Data Compression 

Since the weather radar data is voluminous, there has been considerable interest in 

efficiently storing the weather radar data in a compressed format. Kruger and Krajewski 

(1997) developed an improved format called ASCII Run Length Encoding (RLE) that 

offers several attractive features, among them a compression ratio of about 15:1. This 

format offers preservation of all data values, efficient storage, fast access, modularity, 

and portability across different platforms. The standard data compression techniques such 

as UNIX utility compress do not offer the above features. To access a particular data 

point, e.g., reflectivity value over a rain gage, the data must be decompressed first 

through a time consuming procedure. The disadvantage of this becomes obvious during 

studies that require multiple passes over the same data. This is a typical situation in 

research where it is impossible and/or restrictive to anticipate all possible data uses and 

analyses. As a result, the researcher ends up repeating similar computations many times. 

The sparse sensing of weather addresses a different problem, i.e., how to sample 

frugally in real-time without losing much information. This is not same as lossless 

compression of the data that has already been collected by the radar using conventional 

(slower) scanning methods. The lossless compression offers a technology to efficiently 

store weather data thereby leading to less memory requirements. The sparse sensing leads 
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to faster scanning and tracking of storms in real-time and later recovering the missing 

samples using different reconstruction algorithms. 

Image Interpolation 

Another obvious comparison of sparse sampling could be with the 2-dimensional 

(2D) interpolation of the data to recover missing values. The 2D interpolation is common 

in image processing and computer vision applications. We refer the reader to Sonka et al. 

(2014) for details on various image interpolation algorithms. The purpose of interpolation 

is to render a visibly similar image after the original image has been subjected to some 

geometric transformations.  

 

 

Figure 12. Illustration of reconstruction of precipitation echo using matrix completion by 

sampling directly from the original matrix. (a) Original 𝑍ℎ data matrix in polar 

coordinates (b) 𝑃Ω(𝑍ℎ):Randomly sub-sampled entries of the low-rank 𝑍ℎ 

matrix. (c) 𝑍̂ℎ: Recovered 𝑍ℎ using nearest neighbor interpolation (d) 

Distribution of 𝑍ℎ data (e) Distribution of 𝑍̂ℎ data. 
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The weather radar data matrix completion should not be treated as an image 

interpolation problem. The data matrix is not an image and matrix entries do not denote 

pixel values. Further, the matrix entries are subsequently used for computing science 

products such as rainfall. Therefore, the objective here is not to render a visibly similar 

image. The image interpolation usually interpolates first in one direction separately and 

then in the second direction. To compare the image interpolation with our method, in 

Figure 12 we interpolate the sparsely sampled weather data using the nearest neighbor 

method. The reconstructed matrix has a higher error, but more importantly the resultant 

matrix looks like a “smoothed” version of the original matrix and shows interpolation 

artifacts. This is not same as recovering the matrix accurately. 

In this example, we used the simplest method of nearest-neighbor interpolation. 

There are other advanced image interpolation algorithms such as those based on bilinear 

functions and cubic splines which perform better than the nearest-neighbor method. 

However, all these approaches introduce artifacts the effects of which are compounded 

while generating the dual-polarimetric products from sparsely sampled precipitation 

echoes. 

Precipitation Downscaling 

A related research is downscaling (Ebtehaj et al. 2012) that uses sparse 

regularization to generate high-resolution images of rainfall products from low-resolution 

images. The downscaling method uses sparsity of rainfall image in the wavelet domain. 

Apart from hydrometeorological applications, enhancing the resolution and quality of 

low-resolution images, often referred to as super-resolution in the image processing 

community, has been a subject of interest for many years. Super-resolution refers to 

recovering a high-resolution signal form its low-resolution counterparts.  

Downscaling is related to compressed sensing research but differs considerably 

from sparse sensing of precipitation. Firstly, downscaling is applied on an image rather 
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than the data matrix. Secondly, the sparsity on downscaling is available for the rainfall 

products rather than the received signal itself. Finally, the downscaling is an offline 

processing method while the problem we consider is real-time sensing and acquisition of 

precipitation echoes. 
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CHAPTER 5 

AN OPERATIONAL CS-BASED WEATHER RADAR 

In general, the weather signal as received by the radar is contaminated with a 

number of unwanted echoes or interferences. These interferences may cause the weather 

signal matrix to lose its low rank nature. Therefore, any compressed sensing approach for 

weather radar must account for such situations. In this chapter, we analyze the 

modifications in the reconstruction to account for such situations. 

Reconstruction In Noise 

The ability of a weather radar to detect weak echoes is limited by the presence of 

noise or unwanted echoes. Some of these unwanted signals originate externally to the 

radar system, such as cosmic noise, radome reflections, interference from co-located 

radars, and power transmission lines. The internal source of noise in microwave radar 

receiver is mainly thermal. The thermal noise from various microwave devices in the 

radar receiver tends to lower the signal-to-noise ratio, thereby masking the weaker 

signals. Apart from the receiver noise, other external interference may also be 

encountered in weather signal (for example, from a co-located aircraft surveillance 

radar). Therefore, the performance of CS should also be characterized for precipitation 

signals in the presence of noise. 

The illustrations in Chapter 4 operated on noise-free thresholded data. In this 

study, we characterize the performance of a CS-based weather radar in the presence of 

additive noise. We use a signal model where the precipitation signals form a low-rank 

matrix that is corrupted with (bounded) noise. Using recent advances in algorithms for 

matrix completion from few noisy observations (Candès and Plan 2010), we can 

reconstruct the precipitation scene with reasonable accuracy. The theoretical support for 

this application comes from the extension of matrix completion algorithms proven stable 
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in the presence of bounded noise (Candès and Plan 2010). As a first step we change the 

nuclear norm minimization problem in (42) as follows: 

 

minimize ‖𝑿‖∗ 

subject to ‖𝑃Ω(𝑋 − 𝑌)‖ℱ ≤ 𝛿 
(43) 

where Y is the true matrix M contaminated with noise matrix N, and 𝛿 is the bounded 

noise. The SVT algorithms allows for the recovery of matrix using this formulation. We 

illustrate this reconstruction in Figure 13. 

 

Figure 13. Illustration of reconstruction in noise using SVT algorithm. (a) The noise 
thresholded matrix 𝑴. (b) The measured matrix 𝒀 contaminated with noise 𝑵. 
(c) Reconstructed matrix from the sparse observations (same as in Figure 10). 
We assumed Signal-to-Noise ratio (SNR) of 70 dB. 

Recovery In Presence Of Clutter 

Apart from the precipitation, the transmitted signal of the weather radar can hit 

other targets as well. The backscatter from stationary targets on ground such as trees and 

buildings constitutes undesired signals or clutter for the weather radar. Since the radar 

gains valuable precipitation data close to the ground, it is difficult to avoid ground clutter. 

Filtering the ground clutter echoes from the received signal, called clutter filtering, is one 

of the critical tasks of the radar signal processor. Since the ground clutter is largely 
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stationary and therefore has close-to-zero Doppler velocity, it resides in the low 

frequency part of the signal spectrum. For hard target targets, the ground clutter can be 

easily removed by passing the received signal through a filter that has a notch at zero 

frequency. The targets-of-interest are moving and therefore reside in the non-zero 

frequencies. This filtering technique therefore preserves the target signal. However, for 

weather radar, this technique would prove disastrous since the precipitation signal co-

occupies the low-frequency part of the spectrum with the ground clutter.  

Modern weather radars thus adopt sophisticated ground clutter filtering 

techniques that use the Gaussian shape of the precipitation spectrum (Siggia and 

Passarelli Jr 2004). In case of compressed sensing weather radar, these filtering 

techniques do not directly apply. This calls for an innovative clutter filtering technology 

for compressed sensing weather radar. 

 We note that, except for the lowest elevation scan, most of the time ground 

clutter manifests as a spatially sparse signal. This allows us to pose the clutter filtering as 

a problem of decomposing observed weather data matrix into the sum of a low-rank 

matrix and a sparse error matrix (Candès et al. 2011): the precipitation corresponds to the 

low-rank matrix and the clutter corresponds to the sparse error. Figure 14(a) shows 

XPOL-5 radar data collected at Eastern Iowa Airport at Cedar Rapids on May 25, 2013. 

The radar captured a passing storm apart from ground clutter from nearby buildings and 

vehicles. However, this data matrix can be represented as a sum of low-rank weather data 

matrix (Figure 14(b)) and sparse ground clutter (Figure 14(c)). 

 

minimize
𝑳,𝑺

‖𝑳‖∗ + 𝜆‖𝑺‖1  

subject to 𝐿𝑖𝑗 + 𝑆𝑖𝑗 = 𝑀𝑖𝑗 , (𝑖, 𝑗) ∈ Ω  

(44) 

Since weather radars also scan close to ground, the ground/urban clutter 

contamination is one of the most frequently observed unwanted signals in weather 

echoes. The ground clutter does not form a low-rank matrix. However, often ground 
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clutter can be viewed as a sparsely distributed error. This assumption allows for 

development of CS-based efficient clutter filtering algorithms using recent research on the 

reconstruction of partially observed low-rank matrices mixed with sparse (impulse) noise (Candès 

et al. 2011). 

 

Figure 14. Ground clutter is sparse and the weather signal is low-rank. The addition of 
two is a corrupted low-rank matrix. XPOL-5 data as observed on 25 May, 
2013. 

Compressed Dual-polarimetry 

Many modern weather radars are polarization agile. That is, they can transmit 

both horizontal and vertical polarized electromagnetic waves independently, and the 

radar receiver/processor processes the two polarization echoes independently. From such 

measurements, the determination of dual-polarized products such as differential 

reflectivity (Zdr), copolar correlation coefficient (hv) and differential propagation phase 

(dp) follows. Proper interpretation of these products provides estimates on the size, 

shape, and type of hydrometeors.   

Here we extend the sparse sensing to dual-polarization estimates of precipitation. 

We use data collected with the Iowa X-band Polarimetric (XPOL) radars to test and 

demonstrate our techniques. Application of CS requires sparsity or sparse approximation 

for the radar signals. Unlike hard point targets, precipitation echoes are not sparse in 

conventional dictionaries such as time and frequency. However, the motion among the 
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precipitation scatterers is small compared to the radar wavelength. With typical sampling 

rates their relative positions produce highly correlated echoes from sample to sample. 

These highly-correlated precipitation echoes can be modeled as a low-rank matrix. We 

reconstruct the full matrix and produce estimates of the dual-polarization products in 

Figure 15 where we see that the error in the dual-pol estimates rises compared to single-

pol estimates. Therefore, one of the future directions will be to further reduce the errors 

in the single-pol estimates. 

 

Figure 15. Illustration of reconstruction of dual-pol estimates. (a) Measured 𝑍ℎ (b) 

Measured 𝑍𝑣 (c) Measured differential reflectivity 𝑍𝑑𝑟 (d) Measured Ψ𝑑𝑝 (e) 

𝑃Ω(𝑍ℎ): sparsely sampled 𝑍ℎ (f) 𝑃Ω(𝑍𝑉): sparsely sampled 𝑍𝑉 (g) 𝑍̂𝑑𝑟: 

Reconstructed differential reflectivity (h) Ψ̂𝑑𝑝: Reconstructed differential 

phase. 
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CHAPTER 6 

SPECTRAL SUPER-RESOLUTION WITH PRIOR KNOWLEDGE 

Some of the initial thrusts in this research were based on finding suitable sparsity 

models in conventional dictionaries for the weather radar. As explained in Chapter 3, this 

approach didn’t yield an efficient way to sparsely sample the precipitation echoes. 

However, our investigation in the conventional sparsity models yielded a new research 

thrust in spectral super-resolution. The spectrum of the precipitation echo has a Gaussian 

power spectral density in a continuously-valued frequency domain. Existing compressed 

sensing recovery techniques do not allow for recovery of such a spectrum from 

undersampled signals. During our problem formulation of the recovery of this spectrum 

from few samples, we found novel results in spectral super-resolution that we present in 

this chapter. 

Spectral Estimation 

In many areas of engineering, it is desired to infer the spectral contents of a 

measured signal. In the absence of any a priori knowledge of the underlying statistics or 

structure of the signal, the choice of spectral estimation technique is a subjective craft 

(Marple Jr. 1987; Stoica and Moses 2005). However, in several applications, the 

knowledge of signal characteristics is available through previous measurements or prior 

research. By including such prior knowledge during spectrum estimation process, it is 

possible to enhance the performance of spectral analysis. 

One useful signal attribute is its sparsity in spectral domain. In recent years, 

spectral estimation methods that harness the spectral sparsity of signals have attracted 

considerable interest (Mishali and Eldar 2010; Duarte and Baraniuk 2013; Tang et al. 

2013b; Candès and Fernandez-Granda 2013). These methods trace their origins to 

compressed sensing (CS) that allows accurate recovery of signals sampled at sub-Nyquist 

rate (Donoho 2006b). In the particular context of spectral estimation, the signal is 
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assumed to be sparse in a finite discrete dictionary such as Discrete Fourier Transform 

(DFT). As long as the true signal frequency lies in the center of a DFT bin, the 

discretization in frequency domain faithfully represents the continuous reality of the true 

measurement. If the true frequency is not located on this discrete frequency grid, then the 

aforementioned assumption of sparsity in the DFT domain is no longer valid (Tan and 

Nehorai 2014) (Huang et al. 2012). The result is an approximation error in spectral 

estimation often referred to as scalloping loss (Harris 1978), basis mismatch (Chi et al. 

2011), and gridding error (Fannjiang and Liao 2012). 

Recent state-of-the-art research (Candès and Fernandez-Granda 2013; Tang et al. 

2013a; Tang et al. 2013b) has addressed the problem of basis mismatch by proposing 

compressed sensing in continuous spectral domain. This grid-free approach is inspired by 

the problems of total variation minimization (Candès and Fernandez-Granda 2013) and 

atomic norm minimization (Tang et al. 2013b) to recover super-resolution frequencies - 

lying anywhere in the continuous domain [0,1] - with few random time samples of the 

spectrally sparse signal, provided the line spectrum maintains a nominal separation. A 

number of generalizations of off-the-grid compressed sensing for specific signal 

scenarios have also been attempted, including extension to higher dimensions (Chi and 

Chen 2013; Chi et al. 2011; Xu et al. 2014; Yang and Xie 2014). 

However, these formulations of off-the-grid compressed sensing assume no prior 

knowledge of signal other than sparsity in spectrum. In fact, in many applications, where 

signal frequencies lie in continuous domain such as radar (Skolnik 2008a), acoustics 

(Trivett and Robinson 1981), communications (Beygi and Mitra 2014), and power 

systems (Zygarlicki and Mroczka 2012), additional prior information of signal spectrum 

might be available. For example, a radar engineer might know the characteristic speed 

with which a fighter aircraft flies. This knowledge then places the engineer in a position 

to point out the ballpark location of the echo from the aircraft in the Doppler frequency 

spectrum. Similarly, in a precipitation radar, the spectrum widths of echoes from certain 
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weather phenomena (tornadoes or severe storms) are known from previous observations 

(Doviak and Zrnić 1993). This raises the question whether we can use signal structures 

beyond sparsity to improve the performance of spectrum estimation. 

There are extensive works in compressed sensing literature that discuss 

recovering sparse signals using secondary signal support structures, such as structured 

sparsity (Cevher et al. 2009) (tree-sparsity (Baraniuk et al. 2010), block sparsity (Stojnic 

et al. 2009), and Ising models (Cevher et al. 2008)), spike trains (Hegde et al. 2009; Azais 

et al. 2013), nonuniform sparsity (Khajehnejad et al. 2009; Vaswani and Lu 2010),  and 

multiple measurement vectors (MMVs) (Duarte and Eldar 2011). However, these 

approaches assume discrete-valued signal parameters while, in the spectrum estimation 

problem, frequencies are continuous-valued. Therefore, the techniques of using prior 

support information in discrete compressed sensing for structured sparsity do not directly 

extend to spectrum estimation. Moreover, it is rather unclear as to how general signal 

structure constraints can be imposed for super-resolution recovery of continuous-valued 

frequency components. 

Here, we focus on a more generalized approach to super-resolution that addresses 

the foregoing problems with line spectrum estimation. We propose continuous-valued 

line spectrum estimation of irregularly undersampled signal in the presence of structured 

sparsity. Prior information about the signal spectrum comes in various forms. For 

example, in the spectral information concerning a rotating mechanical system, the 

frequencies of the supply lines or interfering harmonics might be precisely known 

(Wirfält et al. 2011). However, in a communication problem, the engineer might only 

know the frequency band in which a signal frequency is expected to show up. Often the 

prior knowledge is not even specific to the level of knowing the frequency subbands 

precisely. The availability of previous measurements, such as in remote sensing or bio-

medicine, can aid in knowing the likelihood of having an active signal frequency in the 

neighborhood of a specific spectral band. In this paper, we greatly broaden the scope of 
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prior information that can range from knowing only the likelihood of occurrence of 

frequency components in a spectral subband to exactly knowing the location of some of 

the frequencies.  

In all these cases, we propose a precise semidefinite program to perfectly recover 

all the frequency components. When some frequencies are precisely known, we propose 

to use conditional atomic norm minimization to recover the off-the-grid frequencies. In 

practice, the frequencies are seldom precisely known. However, as long as the frequency 

locations are approximately known to the user, we show that the spectrally sparse signal 

could still be perfectly reconstructed. Here, we introduce constrained atomic norm 

minimization that accepts the block priors - frequency subbands in which true spectral 

contents of the signal are known to exist - in its semidefinite formulation. When only the 

probability density function of signal frequencies is known, we incorporate such a 

probabilistic prior in the spectral estimation problem by suggesting the minimization of 

weighted atomic norm. The key is to transform the dual of atomic norm minimization to a 

semidefinite program using linear matrix inequalities (LMI). These linear matrix 

inequalities are, in turn, provided by theories of positive trigonometric polynomials (Fejér 

1915). Our methods boost the signal recovery by admitting lesser number of samples for 

spectral estimation and decreasing reliance on the minimum resolution necessary for 

super-resolution. If the prior information locates the frequencies within very close 

boundaries of their true values, then we show that it is possible to perfectly recover the 

signal using samples no more than thrice the number of signal frequencies. 

Our work has close connections with a rich heritage of research in spectral 

estimation. For uniformly sampled or regularly spaced signals, there are a number of 

existing approaches for spectral estimation by including known signal characteristics in 

the estimation process. The classical Prony's method can be easily modified to account 

for known frequencies (Trivett and Robinson 1981). Variants of the subspace-based 

frequency estimation methods such as MUSIC (MUltiple SIgnal Classification) and 
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ESPRIT (Estimation of Signal Parameters via Rotation Invariance Techniques) have also 

been formulated (Linebarger et al. 1995; Wirfält et al. 2011), where prior knowledge can 

be incorporated for parameter estimation. For applications wherein only approximate 

knowledge of the frequencies is available, the spectral estimation described in (Zachariah 

et al. 2013) applies circular von Mises probability distribution on the spectrum.  

For irregularly spaced or non-uniformly sampled signal, sparse signal recovery 

methods which leverage on prior information have recently gained attention 

(Khajehnejad et al. 2009; Vaswani and Lu 2010; Ji et al. 2008; Bourguignon et al. 2007). 

Compressed sensing with clustered priors was addressed in (Yu et al. 2012a) where the 

prior information on the number of clusters and the size of each cluster was assumed to 

be unknown. In (Fannjiang 2011), MUSIC was extended to undersampled, irregularly 

spaced sparse signals in a discrete dictionary, while (Liao and Fannjiang 2014) analyzed 

the performance of snapshot-MUSIC for uniformly sampled signals in a continuous 

dictionary. Our technique is more general; it applies to irregularly sampled signals in a 

continuous dictionary, and is, therefore, different from known works on utilizing prior 

information for spectral estimation of regularly sampled signals. 

Problem Formulation 

In general, the prior information can be available for any of the signal parameters 

such as amplitude, phase or frequencies. However, in this paper, we restrict the available 

knowledge to only the frequencies of the signal. We assume that the amplitude and phase 

information of any of the spectral component is not known, irrespective of the pattern of 

known frequency information. Our approach is to first analyze the case of a more 

nebulous prior information, which is the probabilistic priors, followed by an interesting 

special case of block priors. The case when some frequencies are precisely known is 

considered in the end where, unlike previously considered cases, we recover the signal 

using the semidefinite program for the primal problem. 
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We consider a frequency-sparse signal 𝑥[𝑙]  expressed as a sum of 𝑠  complex 

exponentials, 

 𝑥[𝑙] = ∑𝑐𝑗𝑒
𝑖2𝜋𝑓𝑗𝑙

𝑠

𝑗=1

= ∑|𝑐𝑗|𝑎(𝑓𝑗 , 𝜙𝑗)[𝑙], 𝑙 𝜖 𝒩,

𝑠

𝑗=1

 (45) 

where 𝑐𝑗 = |𝑐𝑗|𝑒
𝑖𝜙𝑗  (𝑖 =  √−1)  represents the complex coefficient of the frequency 

𝑓𝑗  𝜖 [0, 1] , with amplitude |𝑐𝑗| > 0 , phase 𝜙𝑗  𝜖 [0, 2𝜋) , and frequency-atom 

𝑎(𝑓𝑗 , 𝜙𝑗)[𝑙] =  𝑒(𝑖2𝜋𝑓𝑗𝑙+𝜙𝑗) . We use the index set 𝒩 = {𝑙 | 0 ≤ 𝑙 ≤ 𝑛 − 1} , where 

|𝒩| = 𝑛, 𝑛 𝜖 ℕ, to represent the time samples of the signal. We further suppose that the 

signal in (45) is observed on the index set ℳ ⊆ 𝒩 , |ℳ| = 𝑚 ≤ 𝑛  where 𝑚 

observations are chosen uniformly at random. Our objective is to recover all the 

continuous-valued the frequencies with very high accuracy using this undersampled 

signal. 

The signal in (45) can be modeled as a positive linear combination of the unit-

norm frequency-atoms 𝑎(𝑓𝑗 , 𝜙𝑗)[𝑙] 𝜖 𝒜 ⊂ ℂ𝑛  where 𝒜 is the set of all the frequency-

atoms. These frequency atoms are basic units for synthesizing the frequency-sparse 

signal. This leads to the following formulation of the atomic norm ‖𝑥̂‖𝒜  - a sparsity-

enforcing analog of ℓ1 norm for a general atomic set 𝒜: 

  ‖𝑥̂‖𝒜 = inf𝑐𝑗,𝑓𝑗
{∑ |𝑐𝑗|

𝑠
𝑗=1 : 𝑥̂[𝑙] = ∑ 𝑐𝑗𝑒

𝑖2𝜋𝑓𝑗𝑙𝑠
𝑗=1 , 𝑙 𝜖 ℳ} . (46) 

To estimate the remaining 𝒩\ℳ samples of the signal 𝑥, (Chandrasekaran et al. 

2012) suggests minimizing the atomic norm ‖𝑥̂‖𝒜  among all vectors 𝑥̂  leading to the 

same observed samples as 𝑥. Intuitively, the atomic norm minimization is similar to ℓ1-

minimization being the tightest convex relaxation of the combinatorial ℓ0-minimization 

problem. The primal convex optimization problem for atomic norm minimization can be 

formulated as follows, 

 minimize
𝑥̂

‖𝑥̂‖𝒜   (47) 
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subject to 𝑥̂[𝑙] = 𝑥[𝑙], 𝑙 𝜖 ℳ 

Equivalently, the off-the-grid compressed sensing (Tang et al. 2013b) suggests the 

following semidefinite characterization for ‖𝑥̂‖𝒜: 

Definition 1. (Tang et al. 2013b) Let 𝑇𝑛 denote the 𝑛 × 𝑛 positive semidefinite Toeplitz 

matrix, 𝑡 𝜖 ℝ+, 𝑡𝑟(∙) denote the trace operator and (∙)∗ denote the complex conjugate. 

Then, 

  ‖𝑥̂‖𝒜 = inf𝑇𝑛,𝑡 {
1

2|𝒩|
𝑡𝑟(𝑇𝑛) +

1

2
𝑡: [

𝑇𝑛 𝑥̂
𝑥̂∗ 𝑡

] ≽ 0} . (48) 

The positive semidefinite Toeplitz matrix 𝑇𝑛 is related to the frequency atoms through the 

following Vandermonde decomposition result by Carathèodory (Carathèodory 1911): 

  𝑇𝑛 = 𝑈𝑅𝑈∗, (49) 

where 

  𝑈𝑙𝑗 = 𝑎(𝑓𝑗 , 𝜙𝑗)[𝑙], (50) 

  𝑅 = 𝑑𝑖𝑎𝑔([𝑏1,⋯ , 𝑏𝑟]). (51) 

The diagonal elements of 𝑅 are real and positive, and 𝑟 = 𝑟𝑎𝑛𝑘(𝑇𝑛). 

Consistent with this definition, the atomic norm minimization problem for the 

frequency-sparse signal recovery can now be formulated as a semidefinite program 

(SDP) with 𝑚 affine equality constraints: 

 

minimize
𝑇𝑛,𝑥̂,𝑡

1

2|𝒩|
tr(𝑇𝑛) +

1

2
𝑡  

subject to [
𝑇𝑛 𝑥̂
𝑥̂∗ 𝑡

] ≽ 0 

𝑥̂[𝑙] = 𝑥[𝑙], 𝑙 𝜖 ℳ. 

(52) 

When some information about the signal frequencies is known a priori, then our goal is 

to find a signal vector 𝑥̂ in (52) whose frequencies satisfy additional constraints imposed 
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by prior information. In other words, if 𝒞 denotes the set of constraints arising due to 

prior knowledge of frequencies, then our goal is to find the infimum in (46) over 𝑓𝑗  𝜖 𝒞.  

While framing the problem to harness the prior information, a common approach 

in compressed sensing algorithms is to replace the classical minimization program with 

its weighted counterpart (Khajehnejad et al. 2009; Vaswani and Lu 2010). However, 

signals with continuous-valued frequencies do not lead to a direct application of the 

weighted ℓ1 approach. Rather, such an application leads to a fundamental conundrum: the 

Vandermonde decomposition of positive semidefinite Toeplitz matrices works for 

general frequencies wherein the frequency atom in (50) can freely take any frequency and 

phase values, and it is not clear how to further tighten the positive semidefinite Toeplitz 

structure to incorporate the known prior information. Thus, it is non-trivial to formulate a 

computable convex program that can incorporate general prior information to improve 

signal recovery. 

Probabilistic Priors 

In the probabilistic prior model, the probability density function of the frequencies 

is known. Let 𝐹 be the random variable that describes the signal frequencies. Let the 

probability density function (pdf) of 𝐹  be 𝑝𝐹(𝑓) . The problem of line spectrum 

estimation deals with a finite number of signal frequencies in the domain [0,1]. For 

example, we can assume 𝑝𝐹(𝑓) to be piecewise constant as follows. Let the domain [0,1] 

consist of 𝑝 disjoint subbands such that [0,1] = ⋃ ℬ𝑘
𝑝
𝑘=1  where ℬ𝑘 denotes a subband or 

a subset of [0,1]. Then the restriction 𝑝𝐹(𝑓)|ℬ𝑘
 of 𝑝𝐹(𝑓) to ℬ𝑘 is a constant. Figure 16 

illustrates a simple case for 𝑝 = 2, where the line spectrum 𝑋(𝑓) of a signal 𝑥 is non-

uniformly sparse over two frequency subbands ℬ1  and ℬ2 = [0,1]\ℬ1 , such that the 

frequencies 𝑓𝑗, 𝑗 = 1,⋯ , 𝑠, occur in the subinterval ℬ2 more likely than in ℬ1. 
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Figure 16. The probability density function 𝑝𝐹(𝑓) of the frequencies shown with the 
location of true frequencies in the spectrum 𝑋(𝑓) of the signal 𝑥[𝑙]. 

Intuitively, given probabilistic priors, one may think of recovering the signal 𝑥 by 

minimizing a weighted atomic norm given by: 

 

 

‖𝑥̂‖𝒘𝒜 =
 inf𝑐𝑗,𝑓𝑗

{∑ 𝑤𝑗|𝑐𝑗|
𝑠
𝑗=1 : 𝑥̂[𝑙] = ∑ 𝑐𝑗𝑒

𝑖2𝜋𝑓𝑗𝑙𝑠
𝑗=1 , 𝑙 𝜖 ℳ} , 

(53) 

where 𝒘 = {𝑤1, ⋯ ,𝑤𝑠} is the weight vector, each element 𝑤𝑗 of which is associated with 

the probability of occurrence of the corresponding signal frequency 𝑓𝑗 . The weight 

vectors are assigned using a weight function 𝑤(𝑓). The 𝑤(𝑓) is a piecewise constant 

function in the domain [0,1]  such that the restriction 𝑤(𝑓)|ℬ𝑘
 of 𝑤(𝑓)  to ℬ𝑘  is a 

constant. Therefore, ∀{𝑓1, ⋯ , 𝑓𝑗} 𝜖 ℬ𝑘 , we have 𝑤1 = ⋯ =  𝑤𝑗 = 𝑤(𝑓)|𝑓𝜖ℬ𝑘
= 𝑤(𝑓ℬ𝑘

) 

(say). The 𝑤(𝑓) is a decreasing function of the sparsity associated with the corresponding 

frequency subband so that the subband with higher (lower) value of pdf or lesser (more) 

sparsity is weighted lightly (heavily). 

The problem of line spectral estimation using probabilistic prior can now be 

presented as the (primal) optimization problem concerning the weighted atomic norm: 

 

minimize
𝑥̂

‖𝑥̂‖𝒘𝒜   

subject to 𝑥̂[𝑙] = 𝑥[𝑙], 𝑙 𝜖 ℳ 

(54) 
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But we now observe that, unlike weighted ℓ1  norm (Khajehnejad et al. 2009), a 

semidefinite characterization of the weighted atomic norm does not evidently result from 

(52). Instead, we propose a new semidefinite program for the weighted atomic norm 

using theories of positive trigonometric polynomials, by looking at its dual problem. For 

the standard atomic norm minimization problem (47), the dual problem is framed in this 

manner: 

 

maximize 
𝑞

〈𝑞ℳ , 𝑥ℳ〉ℝ  

subject to ‖𝑞‖𝒜
∗ ≤ 1 

𝑞𝒩\ℳ = 0, 

(55) 

where ‖∙‖∗ represents the dual norm. This dual norm is defined as 

  ‖𝑞‖𝒜
∗ = sup‖𝑥̂‖𝒜≤1〈𝑞, 𝑥̂〉ℝ = sup𝑓𝜖[0,1]|〈𝑞, 𝑎(𝑓, 0)〉|. (56) 

For the weighted atomic norm minimization, the primal problem (54) has only equality 

constraints. As a result, Slater's condition is satisfied and, therefore, strong duality holds 

(Boyd and Vandenberghe 2004). In other words, solving the dual problem also yields an 

exact solution to the primal problem. The dual of weighted atomic norm is given by 

 

‖𝑞‖𝒘𝒜
∗ =  sup

‖𝑥̂‖𝒘𝒜≤1
〈𝑞, 𝑥̂〉ℝ = sup

𝜙𝜖[0,2𝜋],𝑓𝜖[0,1]
〈𝑞,

1

𝑤(𝑓)
𝑒𝑖𝜙𝑎(𝑓, 0)〉ℝ  

= sup𝑓𝜖[0,1] |〈𝑞,
1

𝑤(𝑓)
𝑎(𝑓, 0)〉|. 

(57) 

The dual problem to (54) can be stated hence, 

 

maximize 
𝑞

〈𝑞ℳ , 𝑥ℳ〉ℝ  

subject to ‖𝑞‖𝒘𝒜
∗ ≤ 1 

𝑞𝒩\ℳ = 0, 

(58) 

which by substitution of (57) becomes, 

 maximize 
𝑞

〈𝑞ℳ , 𝑥ℳ〉ℝ  (59) 
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subject to sup
𝑓𝜖[0,1]

|〈𝑞,
1

𝑤(𝑓)
𝑎(𝑓, 0)〉| ≤ 1 

𝑞𝒩\ℳ = 0. 

 

 

Let the probabilistic priors consist of distinct weights for 𝑝 different frequency subbands 

ℬ𝑘 ⊂ [0,1], 𝑘 = 1,⋯ , 𝑝, such that [0,1] =  ⋃ ℬ𝑘
𝑝
𝑘=1 = ⋃ [𝑓𝐿𝑘

, 𝑓𝐻𝑘
]𝑝

𝑘=1 , where 

𝑓𝐿𝑘
 and 𝑓𝐻𝑘

 are, respectively, the lower and upper cut-off frequencies for each 

of the band ℬ𝑘 (

 

Figure 17). If the probability density function is constant within a frequency band, then 

the results of the supremums in (59) need not depend on the weight functions, and 

therefore, the inequality constraint in the dual problem in (59) can be expanded as, 

 

maximize 
𝑞

〈𝑞ℳ , 𝑥ℳ〉ℝ  

subject to sup
𝑓𝜖ℬ1

|〈𝑞, 𝑎(𝑓, 0)〉| ≤ 𝑤(𝑓ℬ1
) 

sup
𝑓𝜖ℬ2

|〈𝑞, 𝑎(𝑓, 0)〉| ≤ 𝑤(𝑓ℬ2
) 

⋮ 

sup
𝑓𝜖ℬ𝑝

|〈𝑞, 𝑎(𝑓, 0)〉| ≤ 𝑤 (𝑓ℬ𝑝
) 

(60) 



www.manaraa.com

60 
 

𝑞𝒩\ℳ = 0. 

We now map each of the inequality constraints in the foregoing dual problem to a linear 

matrix inequality, leading to the semidefinite characterization of the weighted atomic 

norm minimization. The weights are nonnegative values. Further the expression of 𝑄(𝑓) 

has sine and cosine functions. Therefore, We recognize that the constraints in (60) imply 

|1 − 𝑄(𝑓)|2 is a positive trigonometric polynomial (Fejér 1915) in 𝑓 𝜖 ℬ𝑘, since 

 

Figure 17. The individual frequencies of spectrally parsimonious signal are assumed to 

lie in known frequency subbands within the normalized frequency domain 

[0, 1]. We assume that all subbands are non-overlapping so that when 

𝑓𝐻𝑘−1
= 𝑓𝐿𝑘

, then ℬ𝑘−1 = [𝑓𝐿𝑘−1
, 𝑓𝐻𝑘−1] and ℬ𝑘 = [𝑓𝐿𝑘

, 𝑓𝐻𝑘
]. 

 

  𝑄(𝑓) = 〈𝑞, 𝑎(𝑓, 0)〉 = ∑ 𝑞𝑙𝑒
−𝑖2𝜋𝑓𝑙𝑛−1

𝑙=0 . (61) 

Such a polynomial can be parameterized by a particular type of positive semidefinite 

matrix. Thus, we can transform the polynomial inequality, such as the ones in (60), to a 

linear matrix inequality. 
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Gram Matrix Parametrization 

A trigonometric polynomial 𝑅(𝑧) = ∑  𝑟𝑘𝑧
−𝑘𝑛−1

𝑘=−(𝑛−1) , which is also nonnegative 

on the entire unit circle, can be parametrized using a positive semidefinite, Hermitian 

matrix 𝑮  (called the Gram matrix) that identifies the polynomial coefficients 𝑟𝑘  as a 

function of its elements (Dumitrescu 2007, p. 23): 

  𝑟𝑘 = 𝑡𝑟(𝚯𝑘𝑮), (62) 

where 𝚯𝑘  is an elementary Toeplitz matrix with ones on its 𝑘 th diagonal and zeros 

elsewhere. Here, 𝑘 = 0  corresponds to the main diagonal, and 𝑘  takes positive and 

negative values for upper and lower diagonals respectively. 

For the trigonometric polynomial that is nonnegative only over an arc of the unit 

circle, we have the following theorem: 

Theorem 1. (Dumitrescu 2007, p. 12) A trigonometric polynomial 

  𝑅(𝑧) = ∑ 𝑟𝑘𝑧−𝑘𝑛−1
𝑘=−(𝑛−1) , 𝑟−𝑘 = 𝑟𝑘

∗,   (63) 

 

where 𝑅 𝜖 ℂ𝑛−1[𝑧] for which 𝑅(𝜔) ≥ 0, for any 𝑧 = 𝑒𝑖𝜔 , 𝜔 𝜖 [𝜔𝐿 , 𝜔𝐻]  ⊂ [−𝜋, 𝜋], can 

be expressed as 

  𝑅(𝑧) = 𝐹(𝑧)𝐹∗(𝑧−1) + 𝐷𝜔𝐿𝜔𝐻
(𝑧) ∙ 𝐺(𝑧)𝐺∗(𝑧−1),   (64) 

where 𝐹(𝑧) and 𝐺(𝑧) are causal polynomials with complex coefficients, of degree at 

most 𝑛 − 1 and 𝑛 − 2, respectively. The polynomial 

  𝐷𝜔𝐿𝜔𝐻
(𝑧) = 𝑑1𝑧

−1 + 𝑑0 + 𝑑1
∗𝑧,   (65) 

where 

  𝑑0 = −
𝛼𝛽+1

2
   (66) 

  𝑑1 =
1−𝛼𝛽

4
+ 𝑗

𝛼+𝛽

4
   (67) 
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  𝛼 = 𝑡𝑎𝑛
𝜔𝐿

2
 (68) 

  𝛽 = 𝑡𝑎𝑛
𝜔𝐻

2
   (69) 

is defined such that 𝐷𝜔𝐿𝜔𝐻
(𝜔)  is nonnegative for 𝜔 𝜖 [𝜔𝐿 , 𝜔𝐻]  and negative on its 

complementary. 

Since 𝐹(𝑧)  and 𝐺(𝑧)  are causal polynomials, the products 𝐹(𝑧)𝐹∗(𝑧−1) , and 

𝐺(𝑧)𝐺∗(𝑧−1)  are positive trigonometric polynomials that can each be separately 

parameterized with Gram matrices 𝑮1 and 𝑮2 respectively. 

Proposition 2. A trigonometric polynomial 𝑅  in (63) that is nonnegative on the arc 

[𝜔𝐿 , 𝜔𝐻] ⊂ [−𝜋, 𝜋] or, alternatively, the subband [𝑓𝐿 , 𝑓𝐻] ⊂ [0, 1], can be parameterized 

using the Gram matrices 𝑮1 𝜖 ℂ
𝑛×𝑛 and 𝑮2 𝜖 ℂ

(𝑛−1)×(𝑛−1) as follows: 

 
 𝑟𝑘 = 𝑡𝑟(𝜣𝑘𝑮𝟏) + 𝑡𝑟((𝑑1𝜣𝑘−1 + 𝑑0𝜣𝑘 + 𝑑1

∗𝜣𝑘+1) ∙ 𝑮𝟐) 

≜ ℒ𝑘,𝑓𝐿,𝑓𝐻
𝑡𝑟(𝑮1, 𝑮2),   

(70) 

where we additionally require the elementary Toeplitz matrix 𝜣𝑘 in the second argument 

to be a nilpotent matrix of order 𝑛 − 𝑘  for |𝑘| > 0 . The translation of frequencies 

between the two domains is given by (𝑓𝐿 < 𝑓𝐻): 

  𝜔𝐿 = {
2𝜋𝑓𝐿

2𝜋(𝑓𝐿 − 1)
        

: 0 ≤ 𝑓𝐿 ≤ 0.5
: 0.5 < 𝑓𝐿 < 1

   (71) 

 
 𝜔𝐻 = {

2𝜋𝑓𝐻
2𝜋(𝑓𝐻 − 1)

        
: 0 < 𝑓𝐿 ≤ 0.5
: 0.5 < 𝑓𝐻 ≤ 1

   
(72) 

The dual polynomial 𝑄(𝑓) in (61) is nonnegative on multiple non-overlapping 

intervals, and can therefore be parameterized by as many different pairs of Gram matrices 

{𝑮1, 𝑮2}  as the number of subbands 𝑝 . In the following subsection, we relate this 

parametrization to the corresponding probabilistic weights of the subbands. 
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SDP Formulation 

Based on the Bounded Real Lemma (Dumitrescu 2007, p. 127) (which, in turn, is 

based on Theorem 1, a positive trigonometric polynomial constraint of the type |𝑅(𝜔)| ≤

1 can be expressed as a linear matrix inequality (Dumitrescu 2007, p.143). Stating this 

result for the dual polynomial constraint over a single frequency band, such as those in 

(60), we have 

  lim𝑓𝜖[𝑓𝐿,𝑓𝐻]|〈𝑞, 𝑎(𝑓, 0)〉| ≤ 𝛾, (73) 

if and only if there exist positive semidefinite Gram matrices 𝑮1 𝜖 ℂ
𝑛×𝑛  and 

𝑮2 𝜖 ℂ
(𝑛−1)×(𝑛−1) such that, 

 

 𝛾2𝛿𝑘 = ℒ𝑘,𝜔𝐿,𝜔𝐻
(𝑮1, 𝑮2), 𝑘 𝜖 ℋ, 

[
𝑮1 𝑞
𝑞∗ 1

] ≽ 0, 
(74) 

where ℋ  is a halfspace, 𝛿0 = 1 , and 𝛿𝑘 = 1  if 𝑘 ≠ 0 . This linear matrix inequality 

representation using positive semidefinite matrix 𝑮1 paves way for casting the new dual 

problem in (60) as a semidefinite program. This above formulation shows that we have 

changed the inequality form in the convex optimization problem to an equality form 

allowing semidefinite programming for the weighted atomic norm minimization. 

If the cutoff-frequencies 𝜔𝐿 or 𝜔𝐻 (in [−𝜋, 𝜋] domain) are equal to ±𝜋, then we 

can write [𝜔𝐿 , 𝜔𝐻] =  [𝜔𝐿
′ + 𝜏, 𝜔𝐻

′ + 𝜏] such that [𝜔𝐿
′ , 𝜔𝐻

′ ] ⊂ [−𝜋, 𝜋]. For the translated 

subband [𝜔𝐿
′ , 𝜔𝐻

′ ], let the corresponding subband in the domain [0,1] be [𝑓𝐿
′, 𝑓𝐻

′ ]. Then, 

the LMI formulation given by (70) becomes valid for this subband. However, the 

polynomial 𝑞 is now evaluated in the domain 𝑒−𝑖𝜔𝑒−𝑖𝜏 instead of 𝑒−𝑖𝜔. The SDP for this 

frequency translation employs a scaled version of LMI in (74), 

  𝛿𝑘 = ℒ𝑘,𝑓𝐿
′,𝑓𝐻

′ (𝑮1, 𝑮2), 𝑘 𝜖 ℋ, (75) 
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[
 
 
 𝑮1

1

𝛾
𝑞̃𝜏

1

𝛾
𝑞̃𝜏

∗ 1
]
 
 
 

≽ 0, 

where 

 𝑞̃𝜏[𝑗] = 𝑞[𝑗]𝑒−𝑖𝜏𝑗. (76) 

We now state the semidefinite program for weighted atomic norm minimization with the 

probabilistic priors. We use the LMI representation for each of the inequality constraints 

in (60) as follows: 

 

maximize 
𝑞

𝑮11,𝑮12,⋯,𝑮1𝑝,

𝑮21,𝑮22,⋯,𝑮2𝑝

〈𝑞ℳ , 𝑥ℳ〉ℝ  

subject to 𝑞𝒩\ℳ = 0 

𝛿𝑘1
= ℒ𝑘1,𝑓𝐿1

′ ,𝑓𝐻1
′ (𝑮11, 𝑮21), 𝑘1 = 0,⋯ , 𝑛 − 1 

[
 
 
 𝑮11

1

𝑤1
𝑞̃𝜏1

1

𝑤1
𝑞̃𝜏1

∗ 1
]
 
 
 

≽ 0, 

𝛿𝑘2
= ℒ𝑘2,𝑓𝐿2

′ ,𝑓𝐻2
′ (𝑮12, 𝑮22), 𝑘2 = 0,⋯ , 𝑛 − 1 

[
 
 
 𝑮12

1

𝑤2
𝑞̃𝜏2

1

𝑤2
𝑞̃𝜏2

∗ 1
]
 
 
 

≽ 0, 

⋮ 

𝛿𝑘𝑝
= ℒ𝑘𝑝,𝑓𝐿𝑝

′ ,𝑓𝐻𝑝
′ (𝑮1𝑝, 𝑮2𝑝), 𝑘𝑝 = 0,⋯ , 𝑛 − 1 

[
 
 
 
 𝑮1𝑝

1

𝑤𝑝
𝑞̃𝜏𝑝

1

𝑤𝑝
𝑞̃𝜏𝑝

∗ 1
]
 
 
 
 

≽ 0, 

(77) 
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where 𝑞̃𝜏𝑘
[𝑗] = 𝑞[𝑗]𝑒−𝑖𝜏𝑘𝑗 ,      𝑘 = 1,⋯ , 𝑝 

𝑮11, 𝑮12, ⋯ , 𝑮1𝑝 𝜖 ℂ𝑛×𝑛, 

and 𝑮21, 𝑮22, ⋯ , 𝑮2𝑝 𝜖 ℂ(𝑛−1)×(𝑛−1). 

The unknown frequencies in 𝑥̂ can be identified by the frequency localization approach 

(Tang et al. 2013b) based on computing the dual polynomial, that we state for the 

weighted atomic norm problem in Algorithm 1. We state that this characterization of the 

spectral estimation is a general way to integrate given knowledge about the spectrum. If 

the engineer is able to locate the signal frequency in a particular subband with a very high 

degree of certainty, better results can be obtained using the optimization (77). Also, 

information about signal frequency bands is frequently available through previous 

research and measurements, especially in problems pertaining to communication, power 

systems and remote sensing. We consider this more practical case in the following 

section. 

Algorithm 1. Frequency Localization for probabilistic priors 

1: Solve the dual problem (77) to obtain the optimum solution 𝑞⋆. 

2: Let ℱ = {𝑓1, ⋯ , 𝑓𝑗 , ⋯ , 𝑓𝑠} be the unknown frequencies of signal 𝑥 . The unknown 

frequencies 𝑓𝑗 , identify as |〈𝑞⋆, 𝑎(𝑓𝑗 , 0)〉| = 𝑤𝑘 , where 𝑓𝑗  𝜖 ℬ𝑘 ⊂ [0,1] . For 𝑓 𝜖 (ℬ𝑘\

ℱ) ⊂ [0,1], |〈𝑞⋆, 𝑎(𝑓, 0)〉| < 𝑤𝑘. 

3: The corresponding complex coefficients can be recovered by solving a system of 

simultaneous linear equations 𝑥̂[𝑙] − ∑ 𝑐𝑗𝑎(𝑓𝑗 , 0)[𝑙]𝑠
𝑗=1 = 0. 

 

Block Priors 

Of particular interest to spectral estimation are spectrally block sparse signals 

where certain frequency bands are known to contain all the spectral contents of the 

signal. Let us assume that all the 𝑠 frequencies 𝑓𝑗  of the spectrally sparse signal 𝑥 are 
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known a priori to lie only in a finite number of non-overlapping frequency bands or 

intervals within the normalized frequency domain [0,1]. Here, the known set 𝒞 is defined 

as the set ℬ of all frequency bands in which signal frequencies are known to reside. The 

prior information consists of the precise locations of all the frequency bands - the lower 

and upper cut-off frequencies 𝑓ℒ𝑘
 and 𝑓𝐻𝑘

 respectively for each of the band ℬ𝑘 - as shown 

in the Figure 18. We, therefore, have 𝑓𝑗  𝜖 ℬ, ℬ = ⋃ ℬ𝑘
𝑝
𝑘=1 = ⋃ [𝑓𝐿𝑘

, 𝑓𝐻𝑘
]𝑝

𝑘=1 , where 𝑝 is 

the total number of disjoint bands known a priori. 

 

Figure 18. The individual frequencies of spectrally sparse signal are assumed to lie in 
known non-overlapping frequency subbands within the normalized frequency 
domain [0, 1].  

This block prior problem could easily be considered as a special case of 

probabilistic priors where the probability of a frequency occurring in known subbands is 

unity while it is zero for all other subbands. When the frequencies are known to reside in 

the set of subbands ℬ  a priori, we propose to minimize a constrained atomic norm 

‖𝑥̂‖𝒜,ℬ for perfect recovery of the signal: 

 
 

‖𝑥̂‖𝒜,ℬ = inf𝑐𝑗,𝑓𝑗𝜖ℬ
{∑ |𝑐𝑗|

𝑠
𝑗=1 : 𝑥̂[𝑙] = ∑ 𝑐𝑗𝑒

𝑖2𝜋𝑓𝑗𝑙𝑠
𝑗=1 , 𝑙 𝜖 ℳ} , 

(78) 
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As noted earlier, to recover all of the off-the-grid frequencies of the signal 𝑥 given the 

block priors, the direct extension of a semidefinite program from (52) to minimize the 

constrained atomic norm is non-trivial. We address this problem by working with the 

dual problem of the constrained atomic norm minimization, and then transforming the 

dual problem to an equivalent semidefinite program by using theories of positive 

trigonometric polynomials. We note that in the case of block priors, (56) can be written 

as ‖𝑞‖𝒜,ℬ
∗ = sup𝑓𝜖ℬ|〈𝑞, 𝑎(𝑓, 0)〉| = sup𝑓𝜖ℬ|𝑄(𝑓)|, where 𝑄(𝑓) is the dual polynomial. 

The primal problem of constrained atomic norm minimization is given by 

 

minimize
𝑥̂

‖𝑥̂‖𝒜,ℬ  

subject to 𝑥̂[𝑙] = 𝑥[𝑙], 𝑙 𝜖 ℳ 

(79) 

and, similar to (55), we can formulate the corresponding dual problem as 

 

maximize 
𝑞

〈𝑞ℳ , 𝑥ℳ〉ℝ  

subject to ‖𝑞‖𝒜,ℬ
∗ ≤ 1 

𝑞𝒩\ℳ = 0, 

(80) 

where ‖𝑞‖𝒜,ℬ
∗ = sup𝑓𝜖ℬ|〈𝑞, 𝑎(𝑓, 0)〉| . Since ℬ  is defined as a union of multiple 

frequency bands, the inequality constraint in (80) can be expanded to 𝑝  separate 

inequality constraints. It can be easily observed that (80) is a special case of (59) with all 

the weights being unity and ℬ ⊆ [0,1] (i. e. the set of bands ℬ need not necessarily cover 

the entire frequency range). While framing the semidefinite program for this problem, we 

use a linear matrix inequality similar to that in (74) with 𝛾 = 1 for each of the inequality 

constraint in (80), to cast the dual problem constraint into a semidefinite program. So, 

when all the frequencies are known to lie in 𝑝  disjoint frequency bands, then the 

semidefinite program for the dual problem in (80) can be constructed by using 𝑝 equality-

form constraints: 
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maximize 
𝑞

𝑮11,𝑮12,⋯,𝑮1𝑝,

𝑮21,𝑮22,⋯,𝑮2𝑝

〈𝑞ℳ , 𝑥ℳ〉ℝ  

subject to 𝑞𝒩\ℳ = 0 

𝛿𝑘1
= ℒ𝑘1,𝑓ℒ2 ,𝑓ℋ2

(𝑮11, 𝑮21), 𝑘1 = 0,⋯ , 𝑛 − 1 

[
𝑮11 𝑞
𝑞∗ 1

] ≽ 0, 

𝛿𝑘2
= ℒ𝑘2,𝑓ℒ2 ,𝑓ℋ2

(𝑮12, 𝑮22), 𝑘2 = 0,⋯ , 𝑛 − 1 

[
𝑮12 𝑞
𝑞∗ 1

] ≽ 0, 

⋮ 

𝛿𝑘𝑝
= ℒ𝑘𝑝,𝑓ℒ𝑝 ,𝑓ℋ𝑝

(𝑮1𝑝, 𝑮2𝑝), 𝑘𝑝 = 0,⋯ , 𝑛 − 1 

[
𝑮1𝑝 𝑞

𝑞∗ 1
] ≽ 0, 

where 𝑮11, 𝑮12, ⋯ , 𝑮1𝑝 𝜖 ℂ𝑛×𝑛, 

and 𝑮21, 𝑮22, ⋯ , 𝑮2𝑝 𝜖 ℂ(𝑛−1)×(𝑛−1). 

(81) 

In the extreme case when any of the known frequency bands ℬ𝑘 have 𝜔ℒ𝑘
 or 𝜔ℋ𝑘

 

lying exactly on either −𝜋 or 𝜋, then the dual-polynomial in (81) should be appropriately 

translated as noted in (76). 

In many applications, the location of some of the signal frequencies might be 

precisely known. One could think of this known poles problem as a probabilistic prior 

problem where the cardinality of some sets ℬ𝑘  is exactly unity (and the associated 

probability be unity as well), while the remaining frequency subbands have a non-unity 

probability. However, there are a few differences. For probabilistic priors, the probability 

distribution function is known for the entire interval [0,1] while, in case of known poles, 

the probability distribution of the bands of unknown frequencies is unavailable. Also, 
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unlike block prior formulation, known poles problem does not have zero probability 

associated with the remaining subbands. 

Known Poles 

We now consider the case when some frequency components are known a priori 

but their corresponding amplitudes and phases are not. Let the index set of all the 

frequencies be 𝒮 , |𝒮| = 𝑠 . Let 𝒫  be the index set of all the known frequencies, and 

|𝒫| = 𝑝 . Namely, we assume that the signal 𝑥  contains some known frequencies 𝑓𝑗 , 

𝑗 𝜖 𝒫 ⊆ 𝒮, |𝒫| = 𝑝. For known frequencies, let us denote their complex coefficients as 𝑑𝑗 

and their phaseless frequency atoms as 𝑎𝑗[𝑙] = 𝑎(𝑓𝑗 , 0)[𝑙] = 𝑒𝑖2𝜋𝑓𝑗𝑙 $. We define the 

conditional atomic norm ‖𝑥̂‖𝒜,𝒫 for the known poles as follows: 

 
 ‖𝑥̂‖𝒜,𝒫 = inf𝑐𝑗,𝑑𝑗,𝑓𝑗

{∑ |𝑐𝑗|
𝑠−𝑝
𝑗=1 : 𝑥̂[𝑙] = ∑ 𝑐𝑗𝑒

𝑖2𝜋𝑓𝑗𝑙𝑠−𝑝
𝑗=1 +

∑ 𝑑𝑗𝑒
𝑖2𝜋𝑓𝑗𝑙𝑠

𝑗=𝑠−𝑝+1 , 𝑙 𝜖 ℳ} , 
(82) 

Unlike previously mentioned a priori counterparts of the atomic norm, the semidefinite 

formulation for ‖𝑥̂‖𝒜,𝒫 easily follows from (48). 

Proposition 1. The conditional atomic norm for a vector 𝑥̂ is given by 

  ‖𝑥̂‖𝒜,𝒫 = 𝑖𝑛𝑓𝑇𝑛,𝑥̃,𝑡,𝑑𝑗
{

1

2|𝒩|
𝑡𝑟(𝑇𝑛) +

1

2
𝑡: [

𝑇𝑛 𝑥̃
𝑥̃∗ 𝑡

] ≽ 0} . (83) 

where 𝑥̃[𝑙] = 𝑥̂[𝑙] − ∑ 𝑎𝑗[𝑙]𝑑𝑗𝑗𝜖𝒫  represents the positive combination of complex 

sinusoids with unknown poles. 

The conditional atomic norm minimization problem can be posed as the following 

semidefinite formulation in a similar way as in (52): 

 

minimize
𝑇𝑛,𝑥̂,𝑥̃,𝑡,𝑑𝑗

1

2|𝒩|
tr(𝑇𝑛) +

1

2
𝑡  

subject to [
𝑇𝑛 𝑥̃
𝑥̃∗ 𝑡

] ≽ 0 

𝑥̂[𝑙] = 𝑥[𝑙], 𝑙 𝜖 ℳ 

(84) 
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𝑥̂[𝑙] = 𝑥̃[𝑙] + ∑𝑎𝑗[𝑙]𝑑𝑗

𝑗𝜖𝒫

, 𝑙 𝜖 ℳ. 

The 𝑥̃ can be viewed as the signal filtered of the known poles. The remaining unknown 

frequencies in 𝑥̃ can be identified by the frequency localization approach that we restate 

for 𝑥̃ in Algorithm 1. 

Algorithm 1. Known poles algorithm 

1: Solve the semidefinite program (84) to obtain 𝑥̃. 

2: Solve the following dual problem to obtain the optimum solution 𝑞⋆ 

 

maximize 
𝑞

〈𝑞, 𝑥̃〉ℝ  

subject to ‖𝑞‖𝒜
∗ ≤ 1 

𝑞[𝑙] = 0, 𝑙 𝜖 𝒩\ℳ. 

(85) 

 

3: The unknown frequencies 𝑓𝑗 , 𝑗 𝜖 𝒫 , identify as |〈𝑞∗, 𝑎𝑗〉| = 1 . For 𝑗 ∉ 𝒮\𝒫 , 

|〈𝑞∗, 𝑎𝑗〉| < 1. 

4: Solve the following system of simultaneous linear equations to recover the complex 

coefficients of unknown frequencies: 𝑥̃[𝑙] − ∑ 𝑐𝑗𝑎𝑗[𝑙]𝑗𝜖𝒮\𝒫 = 0. 

 

Performance Analysis 

To identify the true frequencies of the signal from the solution of the dual 

problem, we now establish the conditions for finding the dual-certificate of support when 

prior information is available. We additionally show that the dual polynomial 

requirements can be slackened if the prior information gives the approximate location of 

each of the signal frequencies. We further put our result in the context of minimum 

number of signal samples required for the reconstruction of the signal 𝑥. 

Since the primal problem (54) has only equality constraints, Slater's condition is 

satisfied. As a consequence, strong duality holds (Boyd and Vandenberghe 2004). This 
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allows us to present the dual-certificate of support for the optimizer of (54). In the 

following theorems, sign(𝑐𝑗) = 𝑐𝑗 |𝑐𝑗|⁄ , and ℜ(∙) denotes the real part (of a complex 

number). 

Theorem 1. Let the set of atoms {𝑎ℳ(𝑓1, 0),⋯ , 𝑎ℳ(𝑓𝑠, 0)} supported on subset ℳ of 𝒩 

be linearly independent. Then, 𝑥̂ = 𝑥 is the unique solution to the primal problem (54), if 

there exists a polynomial 

  𝑄(𝑓) = 〈𝑞, 𝑎(𝑓, 0)〉 = ∑ 𝑞𝑙𝑒
−𝑖2𝜋𝑓𝑙𝑛−1

𝑙=0  , (86) 

such that 

 𝑄(𝑓𝑗) = 𝑤𝑘𝑠𝑖𝑔𝑛(𝑐𝑗), ∀ 𝑓𝑗 ∈ ℬ𝑘 ⊆ [0,1] (87) 

  |𝑄(𝑓)| < 𝑤𝑘, ∀ 𝑓 ∈ (ℬ𝑘\ℱ) ⊂ [0,1] (88) 

  𝑞𝒩\ℳ = 0. (89) 

As a corollary to Theorem 11, we can arrive at the dual polynomial for the block prior 

problem as follows. 

Corollary 2. The 𝑥̂ = 𝑥 is the unique solution to the primal problem (79), if there exists a 

polynomial 𝑄(𝑓) such that 

 𝑄(𝑓𝑗) = 𝑠𝑖𝑔𝑛(𝑐𝑗), ∀ 𝑓𝑗 ∈ ℱ ⊂ ℬ (90) 

  |𝑄(𝑓)| < 1, ∀ 𝑓 ∈ (ℬ\ℱ) (91) 

  𝑞𝒩\ℳ = 0. (92) 

When the prior information is available to such a generous extent that each of the 

individual frequencies are known within close boundaries, as we present next, an 

interesting consequence of this relaxation is that the number of samples required to 

reconstruct the signal could be bounded. 
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Theorem 3. Let the signal 𝑥 as in (45) be sampled on a subset ℳ of 𝒩. If there exists a 

polynomial 𝑄(𝑓) such that ∀ 𝑓𝑗 ∈ ℱ ⊂ ℬ, 

 𝑄(𝑓𝑗) = 𝑠𝑖𝑔𝑛(𝑐𝑗) (93) 

  𝑄′(𝑓𝑗) = ∑ 𝑙𝑞𝑙𝑒
−𝑖2𝜋𝑓𝑗𝑙𝑛−1

𝑙=0 =  0 (94) 

  𝑄′′(𝑓𝑗) = ∑ −(2𝜋𝑙)2𝑞𝑙𝑒
−𝑖2𝜋𝑓𝑗𝑙𝑛−1

𝑙=0 = −𝑠𝑖𝑔𝑛 (ℜ(𝑐𝑗)), 
(95) 

and, if each of the frequencies is known within a sufficiently small frequency subband, 

then 𝑥̂ = 𝑥 is the unique optimizer of the primal problem (79). Further, assuming 𝑓𝑗s are 

distributed uniformly at random in [0,1], such a dual polynomial exists with probability 1 

when 𝑚 ≥ 3𝑠. 

The formulation in (77) generalizes the prior information. As the cases of block 

priors and known poles indicate, the more we know about the spectral structure of the 

signal, precise formulations of atomic norm minimization can be evaluated to boost 

signal recovery. If all poles are known in the sense of known poles algorithm (i.e., the 

amplitudes and phases of all known poles are unknown), then the signal 𝑥  can be 

uniquely reconstructed using the randomly sampled support 𝑥ℳ where |ℳ| = 𝑠. Further, 

it is well known that if the signal is uniformly sampled, then the Prony's method can 

uniquely reconstruct the signal 𝑥  using no more than 2𝑠  samples. In comparison, our 

results from Theorem 3 show that if each of the poles are approximately known, then the 

unique reconstruction of the signal 𝑥 requires no more than 3𝑠 samples. 

Numerical Experiments 

We evaluated our algorithms through numerical experiments using the SDPT3 

(Tütüncü et al. 2003) solver for the semidefinite programs. In all experiments, for a 

particular realization of the signal, the phases of the signal frequencies were sampled 

uniformly at random in [0, 2𝜋). The amplitudes |𝑐𝑗|, 𝑗 = 1,⋯ , 𝑠 were drawn randomly 
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from the distribution 0.5 + 𝜒1
2  where 𝜒1

2  represents the chi-squared distribution with 1 

degree of freedom. 

Probabilistic Priors 

We evaluated the semidefinite program (77) for the case when 𝑝 = 2 . Here, 

ℬ1 = [0,0.2] and ℬ1 = (0.2, 1] so that ℬ1⋃ℬ2 = [0,1]. We consider the situation when 

the probability of occurrence of signal frequency in ℬ1 is 1000 times higher than ℬ2. This 

results in the pdf values of 𝑝𝐹(𝑓)|ℬ1
= 4.9801 and 𝑝𝐹(𝑓)|ℬ2

= 0.005. A suitable sub-

optimal choice of 𝑤(𝑓) could be simply 𝑤(𝑓) = 1 𝑝𝐹(𝑓)⁄ , so that the associated weights 

are given by  𝑤1 = 0.2008  and 𝑤2 = 200.8000 . For each random realization of the 

signal, the signal frequencies are drawn randomly based on the given probability density 

function. 

Experiment A.1. A simple illustration of the signal recovery using (77) is shown 

through frequency localization in Figure 19. For a signal of dimension 𝑛 =  64  and 

number of frequencies 𝑠 =  5 , Figure 19(a) shows that even when all samples are 

observed (𝑚 =  64), the standard atomic norm minimization (52) is unable to recover 

any of the frequencies, for the maximum modulus of the dual polynomial assumes a 

value of unity at many other frequencies. However, given the probabilistic priors, 

semidefinite program (77) is able to perfectly recover all the frequencies as shown in 

Figure 19(b). Here, |𝑄(𝑓𝑗)| = 𝑤1 = 0.2008 for 𝑓𝑗 ∈ ℱ ⊂ ℬ1, and |𝑄(𝑓𝑗)| = 𝑤2 = 200.8 

for 𝑓𝑗 ∈ ℱ ⊂ ℬ2. 
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Figure 19. Frequency localization using dual polynomial for {𝑛, 𝑠,𝑚} = {64, 5, 64}. The 

probabilistic priors are 𝑝𝐹(𝑓)|ℬ1= [0,0.2]  = 4.9801 and 𝑝𝐹(𝑓)|ℬ2=(0.2,1]  =

0.005. The insets show the same plot on a smaller scale. 

 

Figure 20. The probability 𝑃 of perfect recovery over 1000 trials for {𝑛, 𝑠}  =  {64, 5}. 
The probabilistic priors are 𝑝𝐹(𝑓)|ℬ1= {[0,0.3]∪ (0.7,1]} = 0.0025 and 

𝑝𝐹(𝑓)|ℬ2=(0.3,0.7] = 2.4963. 
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Experiment A.2. A comparison of the statistical performance of (77) with the 

standard atomic norm for 𝑛 = 64 is shown in Figure 20 over 1000 trials. Here, the pdf 

𝑝𝐹(𝑓) is 1000 times higher in the subband (0.3, 0.7] than the rest of the spectrum. We 

note that the weighted atomic norm is about twice more successful than the standard 

atomic norm in recovering the signal frequencies. 

Block Priors 

We evaluated the performance of spectrum estimation with block priors through 

numerical simulations for the semidefinite program in (81). Here, for every random 

realization of the signal, the frequencies are drawn uniformly at random in the set of 

subbands ℬ = ⋃ ℬ𝑘
𝑠
𝑘=1 ⊂ [0,1]. 

Experiment B.1. We first illustrate our approach through an example in Figure 

21. Here for 𝑛 =  64, we drew 𝑠 =  5 frequencies uniformly at random within 𝑝 =  3 

subbands in the domain [0, 1]  without imposing any minimum separation condition. 

Here, ℬ = (0.3500, 0.4800) ∪ (0.6000, 0.8000)  ∪ (0.8500, 0.9000) . A total of 

𝑚 =  20 observations were randomly chosen from 𝑛 regular time samples to form the 

sample set ℳ. In the absence of any prior information, we solve (55) and show the result 

of frequency localization in Figure 21(a). Here, it is difficult to pick a unique set of 

𝑠 =  5 poles for which the maximum modulus of the dual polynomial is unity (which 

will actually correspond to recovered frequency poles). On the other hand, when block 

priors are given, Figure 21(b) shows that solving (81) provides perfect recovery of all the 

frequency components, where the recovered frequencies correspond to unit-modulus 

points of the dual polynomial. 

Experiment B.2. We then give a statistical performance evaluation of our new 

method, compared with atomic norm minimization without any priors (55). The 

experimental setup and block priors are the same as in Figure 21 and no minimum 

separation condition was assumed while drawing frequencies uniformly at random in the 
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set ℬ. Figure 23(a) shows the probability 𝑃 of perfect recovery for the two methods for 

fixed 𝑛 = 64 but varying values of 𝑚  and 𝑠 . For every value of the pair {𝑠,𝑚}, we 

simulate 100  trials to compute 𝑃 . We note that if the frequencies are approximately 

known, our method greatly enhances the recovery of continuous-valued frequencies. 

 

Figure 21. Frequency localization using dual polynomial for {𝑛, 𝑠,𝑚}  =  {64, 5, 20}. The 
block priors are 
ℬ = [0.3500, 0.4800] ∪ [0.6000, 0.8000] ∪ [0.8500, 0.9000]. 

Experiment B.3. To illustrate the theoretical result of Theorem 3, we now 

consider the block prior problem when each of the frequencies are known to lie in 

extremely small subintervals. For the triplet {𝑛, 𝑠,𝑚}  =  {64, 7, 18}, Figure 22 depicts 

the frequency localization. In the absence of any prior knowledge, the standard atomic 

norm minimization of (52) fails to locate any of the signal frequencies (Figure 22(a)). 

However, if the frequencies are approximately known (or, in other words, the frequency 

subband of the block prior is very small), then the semidefinite program in (81) perfectly 

recovers the signal requiring not more than 3𝑠 number of samples (𝑚 =  18 <  21 =
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 3𝑠), as shown in Figure 22(b). Here, the block priors consist of narrow frequency bands 

around each true pole 𝑓𝑗 such that ℬ = ⋃ ℬ𝑘
𝑠
𝑘=1 = ⋃ [𝑓𝑗 − 0.001, 𝑓𝑗 + 0.001]𝑠

𝑘=1 . 

 

Figure 22. Frequency localization using dual polynomial for {𝑛, 𝑠,𝑚}  = {64, 7, 18}. The 

block priors consist of small frequency bands around each true pole 𝑓𝑗 such 

that ℬ = ⋃ ℬ𝑘
𝑠
𝑘=1 = ⋃ [𝑓𝑗 − 0.001, 𝑓𝑗 + 0.001]𝑠

𝑘=1 . The right plot has been 

magnified in the inset to show the size of the block prior. 

Experiment B.4. For the same signal dimension, size and number of blocks as in 

the previous experiment, Figure 23(b) shows a comparison of statistical performance of 

block prior method with the standard atomic norm minimization over 100 trials. For 

every 𝑠 , the parameter 𝑚  was varied until 𝑚  was at least 3𝑠 . (Note that the perfect 

recovery with 3𝑠 samples in Theorem 3 holds only when the block prior is arbitrarily 

small.) 
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Figure 23. The probability 𝑃 of perfect recovery over 100 trials for 𝑛 =  64. The 
performance of standard atomic norm is compared with the block prior setups 
of Figure 21 (left) and Figure 22 (right). 

Known Poles 

We evaluated the known poles algorithm through a number of simulations to solve 

the semidefinite program (84).  In all our experiments, the 𝑠 frequencies of the artificially 

generated signal were drawn at random in the band [0, 1]. Except for Experiment 4, the 

sampled frequencies were also constrained to have the minimum modulo spacing of 

Δ𝑓 = 1 ⌊(𝑛 − 1) 4⁄ ⌋⁄  between the adjacent frequencies. This is the theoretical resolution 

condition for the results in (Tang et al. 2013b), although numerical experiments 

suggested that frequencies could be closer, i.e., Δ𝑓 could be 1 (𝑛 − 1)⁄ . While working 

with the known poles, we draw the first known frequency uniformly at random from the 

set of 𝑠 frequencies. As the number 𝑝 of known poles increases, we retain the previously 

drawn known frequencies and draw the next known frequency uniformly at random from 

the remaining set of existing signal frequencies. 

Experiment C.1. We simulated a low-dimensional model with the triple 

(𝑛,𝑚, 𝑠)  =  (32, 9, 4) and first solved the semidefinite program (52) which does not use 

any prior information, i.e., 𝑝 =  0 . For the same realization of the signal, we then 
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successively increase 𝑝 up to 𝑠 − 1, and solve the optimization (84) of the known poles 

algorithm. At every instance of solving an SDP, we record the number 𝑘 of successfully 

recovered frequencies along with their complex coefficients. This number also includes 

the known frequencies if the recovery process returns exact values of their complex 

coefficients. 𝑘 =  𝑠 corresponds to complete success, i.e., recovering all of the unknown 

spectral content. 𝑘 =  0  is complete failure, including the case when the complex 

coefficients of the known frequencies could not be recovered. Figure 24(a) shows the 

probability 𝑃  of recovering 𝑘  frequencies over 1000  trials. Although the complex 

coefficients of the known frequencies were unknown, the known poles algorithm 

increases the probability of recovering all or some of the unknown spectral content. 

Experiment C.2. We repeat the first experiment for the higher-dimensional pair 

{𝑛,𝑚} = {256, 40} and vary 𝑠. The probability 𝑃 over 100 random realizations of the 

signal is shown in Figure 25 for selected values of 𝑠. Here, the probability of successfully 

recovering all the frequencies using the known poles Algorithm 1 increases with 𝑝. 

Experiment C.3. Figure 24(b) shows the probability 𝑃 of complete success as a 

function of 𝑚 over 100 trials for the twin {𝑛, 𝑠} = {80, 6}. We note that the known poles 

algorithm achieves the same recovery probability when compared to (52) with a smaller 

number of random observations. 

Experiment C.4. We now consider these two cases: (a) when Δ𝑓 = 1 (𝑛 − 1)⁄ , 

the resolution limit for the numerical experiments in (Tang et al. 2013b), and (b) when 

the frequencies are drawn uniformly at random and do not adhere to any minimum 

resolution conditions. Figure 26 shows the probability 𝑃 of recovering 𝑘 frequencies over 

1000 trials for the triple {𝑛,𝑚, 𝑠} = {40, 15, 7}. We note that the probability of complete 

success with known poles suffers relatively little degradation for the random frequency 

resolutions. These trials include instances when the minimum resolution condition does 

not hold, formulation in (52) shows complete failure but the known poles algorithm 

recovers the unknown spectral content with complete success. 
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Figure 24. The probability 𝑃 of recovering the unknown spectral content. The probability 
is computed for 1000 random realizations of the signal for the 
triple {𝑛,𝑚, 𝑠}  =  {32, 9, 4}. (For 𝑘 >  0, 𝑘 ≤  𝑝 being the invalid cases, the 
corresponding bars have been omitted.) (b) A higher probability 𝑃 of 
recovering all the unknown frequency content can be achieved with a smaller 
number 𝑚 of random observations using the known poles algorithm. The 
probability is computed for 100 random realizations with {𝑛, 𝑠}  =  {80, 6}. 

 

Figure 25. The probability 𝑃 of recovering the unknown spectral content for selected 
values of 𝑠. The probability is computed for 100 random realizations of the 
signal with {𝑛,𝑚}  =  {256, 40}. (The lower diagonal cases when 𝑘 >  0, 
𝑘 ≤  𝑝 are invalid, and do not contribute to the result.) 
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Figure 26. Performance of the known poles algorithm when the frequencies do not satisfy 
any nominal resolution conditions. The probability 𝑃 of successfully 
recovering 𝑘 frequencies is computed for 1000 realizations of the signal with 
dimensions {𝑛,𝑚, 𝑠}  =  {40, 15, 7}. (a) Δ𝑓 = 1 (𝑛 − 1)⁄  (b) Frequencies are 
selected uniformly at random in the band [0, 1]. 
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CHAPTER 7 

SUMMARY AND FUTURE WORK 

We proposed an innovative meteorological radar, which uses reduced number of 

spatiotemporal samples without compromising the accuracy of target information. Our 

approach extends recent research on compressed sensing (CS) for radar remote sensing of 

hard point scatterers to volumetric targets. The previously published CS-based radar 

techniques are not applicable for sampling weather since the precipitation echoes lack 

sparsity in both range-time and Doppler domains. Therefore we proposes an alternative 

approach by adopting the latest advances in matrix completion algorithms to demonstrate 

the sparse sensing of weather echoes. We used Iowa X-band Polarimetric (XPOL) radar 

data to test and illustrate our algorithms. This research opens a number of interesting 

avenues for the future work. We discuss some of these in the following sections. 

Other Sparsity Models 

In this research, we have made initial investigations in the sparse representation of 

weather radar data. One of the future research problems to consider is to extensively 

consider other possibilities for sparse dictionaries. This may involve dictionary learning 

using real weather radar data, or finding stable embeddings in high-dimensional 

manifolds. Even for a low-rank matrix, several other formulations are possible given 

prior knowledge of the signal structure. We considered some of these, for example, in 

Chapter 5.  

Establishing other parsimonious models of weather data and accurately learning 

its structure is key to sparse sensing using weather radar. We may also consider the 

multiple-frames of radar scans for a more sophisticated signal structure. Modeling the 

weather data as a manifold which has a low-dimensional embedding is another promising 

signal model that has witnessed state-of-the-art research recently (Wakin 2010). 
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Attenuation Correction 

As the radar signal propagates in the rain medium, it suffers differential 

attenuation in two polarizations. One of the matrix completion benefits could be to 

efficiently recover the weak signals at far range than what is possible using standard 

attenuation correction methods. Further, when the radar signal becomes completely 

extinct due to heavy precipitation, it will be interesting to recover the signal using data 

from other radars while also using matrix recovery algorithms. 

Faster Matrix Completion Algorithms 

The nuclear norm minimization, though accurate, is computationally expensive. 

In practice, any operational implementation of the sparse sensing using weather radar 

would require a real-time implementation of the matrix completion. Therefore, one of the 

future research areas is to explore faster algorithms for matrix recovery. As an example, 

we used LMaFit algorithm in Chapter 4 that yielded reasonable error with almost real-

time recovery.  

A possible research could be in the area of Bayesian matrix completion (Alquier 

et al. 2014) that uses prior statistical knowledge of the signal for matrix recovery. For 

precipitation, the received signal in dual-polarized weather radar is a bivariate complex 

Gaussian random variable. For Bayesian matrix completion, the distribution of individual 

I/Q samples can be used as a statistical prior. 

Differential SNR-based Sampling 

The results in this chapter demonstrate that low-rank nature of weather signal can 

be successfully harnessed for accelerating the scans of weather radars. So far, the 

sampling of the weather signal that we have considered is uniformly at random. 

However, other variations of this approach can be formulated for the sparse sensing in 

precipitation radars.  
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Since every range profile of the meteorological variable is a result of averaging of 

several returns from multiple pulses, a natural sparse sensing would be to randomly miss 

a few pulses for each ray. The result would be differential signal-to-noise ratio (SNR) for 

each ray. With this prior information, it is possible to pose a different matrix completion 

problem that has constraints of differential SNRs for each ray. 
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